Tính nhanh :
A = 2.3.4 + 3.4.5 + ... + 20.21.22
B = 5.6 + 6.7 + ... + 30.31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A.3=5.6.3+6.7.3+...+30.31.3
A.3=5.6.(7-4)+6.7.(8-5)+...+30.31.(32-29)
A.3=5.6.7-4.5.6+6.7.8-5.6.7+...+30.31.32-29.30.31
A.3=(5.6.7-5.6.7)+...+(29.30.31-29.30.31)+(30.31.32-4.5.6)
A.3=0+...+0+30.31.32-4.5.6
A.3=30.31.32-4.5.6
A=30.31.32-4.5.6 /3
A=(29760-120)/3
A=29460/3
A=9880
vậy A là 9880
lưa ý dấu này/ nghĩa là chia
3.A = 5.6.(7-4) + 6.7.(8-5) + ....+30.31.(32- 29)
3.A = 5.6.7 - 4.5.6 + 6.7.8 - 5.6.7 + ...+ 30.31.32 - 29.30.31
3.A = (5.6.7 + 6.7.8 + ...+ 30.31.32) - (4.5.6 + 5.6.7 + ...+ 29.30.31)
3.A = 30.31.32 - 4.5.6 = 29 640 => A = 9 880
Câu 1:
Đặt S = 1.2+2.3+3.4+...+30.31
3 S = 1.2.3+2.3.3+3.4.3+...+30.31.3
3 S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ...+ 30.31.(32-29)
3S = 1.2.3 + 2.3.4-2.3 + 3.4.5-2.3.4 + ...+ 30.31.32-29.30.31
3S= 30.31.32
S= 30.31.32/3
Bài 1:
$A=1.2+2.3+3.4+...+201.202$
$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+201.202(203-200)$
$=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+201.202.203-200.201.202$
$=(1.2.3+2.3.4+3.4.5+...+201.202.203)-(1.2.3+2.3.4+....+200.201.202)$
$=201.202.203$
$\Rightarrow A=\frac{201.202.203}{3}=2747402$
Bài 2:
$S=4.5+5.6+6.7+....+100.101$
$3S=4.5(6-3)+5.6.(7-4)+6.7.(8-5)+....+100.101(102-99)$
$=4.5.6-3.4.5+5.6.7-4.5.6+6.7.8-5.6.7+....+100.101.102-99.100.101$
$=(4.5.6+5.6.7+6.7.8+...+100.101.102)-(3.4.5+4.5.6+5.6.7+...+99.100.101)$
$=100.101.102-3.4.5$
$\Rightarrow S=\frac{100.101.102-3.4.5}{3}=343380$
Bài 5:
a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)
\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)
\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)
hay A=330
Vậy: A=330
a) Số hạng trong tổng có dạng n.(n+1)(n+2)
nhận xét: n(n+1)(n+2)(n+3) - (n-1).n(n+1)(n+2) = 4.n(n+1)(n+2). Tính A
4.A = 2.3.4.(5-1) + 3.4.5.(6-2) + ...+ 20.21.22.(23 - 19)
4.A = 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ...+ 20.21.22.23 - 19.20.21.22
4.A = (2.3.4.5 + 3.4.5.6 + ...+ 20.21.22.23) - (1.2.3.4 + 2.3.4.5 + ...+ 19.20.21.22)
4.A = 20.21.22.23 - 1.2.3.4 = 212 496 => A = 53 124
b) Em xem lại : dạng nào đã hỏi rồi , em nên tự làm