K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 8 2021

Ủa biểu thức là \(\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\) hay \(\left|\overrightarrow{MA}+2\overrightarrow{MB}-\overrightarrow{MC}\right|\) em? Vì vecto không có khái niệm min max, chỉ độ dài vecto mới có min, max thôi

3 tháng 9 2021

dạ, có dấu giá trị tuyệt đối ạ, do em không gõ ra cái dấu đó được nên bị thiếu ạ.

Kí hiệu v là vectơ nhé 
1) Gọi I là điểm thỏa v IA + v IB + 3 v IC = 0 (1) (đây là vectơ 0 nhé) 
=> v IA + v IA + v AB + 3 v IA + 3 AC = 0 
=> 5 v IA = - (v AB + 3 v AC) => I cố định (do A, B, C cố định) 
Ta có: v a = v MA + v MB + 3 v MC = v MI + v IA + v MI + v IB + 3 v MI + 3 v IB = 
= 5 v MI + ( v IA + v IB + 3 v IC) = 5 v MI (do (1)) 
=> | v a| = | 5 v MI| = 5 MI 
|v a| Min <=> MI min <=> MI = 0 <=> M trùng I 
Vậy khi M là điểm thỏa 5 v MA = - (v AB + 3 v AC) (cố định) thì độ dài vectơ a nhỏ nhất. 

11 tháng 6 2019

Với mọi điểm O ta có :

\(\overrightarrow{u}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}=\overrightarrow{OA}-\overrightarrow{OM}+\overrightarrow{OB}-\overrightarrow{OM}+2\left(\overrightarrow{OC}-\overrightarrow{OM}\right)\)

     \(=\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}-4\overrightarrow{OM}\)

Ta chọn điểm O sao cho \(\overrightarrow{v}=\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)

( Chú ý: Nếu G là trọng tâm tam giác ABC thì \(\overrightarrow{v}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OC}=3\overrightarrow{OG}+\overrightarrow{OC}=4\overrightarrow{OG}+\overrightarrow{GC}\). Bởi vậy để \(\overrightarrow{v}=\overrightarrow{0}\)ta chọn điểm O sao cho \(\overrightarrow{GO}=\frac{1}{4}\overrightarrow{GC}\))

Khi đó \(\overrightarrow{u}=-4\overrightarrow{OM}\)và do đó \(|\overrightarrow{u}|=4OM\)

Độ dài vectơ \(\overrightarrow{u}\)nhỏ nhất khi và chỉ khi 4OM nhỏ nhất hay M là hình chiếu vuông góc của O trên d

6 tháng 9 2021
1/2bóng đỏ 1/3 số bóng xanh tìm bóng vàng
NM
6 tháng 9 2021

Gọi điểm I thỏa mãn : \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\), do ABC cố định nên điểm I là cố định

ta có : 

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|=\)\(\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|=\left|5\overrightarrow{MI}\right|=5MI\) nhỏ nhất khi M là hình chiếu của I lên đường thẳng d