K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Hình như sai đề rồi bạn :

Có phải như thế này không :

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+y}\)

Ta có\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}\)

\(=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{2x+2y+2z+1+2-3}{x+y+z}\)

\(=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Nên \(\dfrac{1}{x+y+z}=2\Rightarrow x+y+z=\dfrac{1}{2}\)

Ta lại có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=2\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)-z+1}{x}=\dfrac{\left(x+y+z\right)-y+2}{y}=\dfrac{\left(x+y+z\right)-z-3}{z}=2\)

\(\Rightarrow\dfrac{\dfrac{1}{2}-x+1}{x}=\dfrac{\dfrac{1}{2}-y+2}{y}=\dfrac{\dfrac{1}{2}-z-3}{z}=2\)

\(\Rightarrow\dfrac{\dfrac{3}{2}-x}{x}=\dfrac{\dfrac{5}{2}-y}{y}=\dfrac{-z-\dfrac{5}{2}}{z}=2\)

\(\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{\dfrac{3}{2}-x}{x}\\\dfrac{\dfrac{5}{2}-y}{y}\\\dfrac{-z-\dfrac{5}{2}}{z}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=\dfrac{3}{2}-x\\2y=\dfrac{5}{2}-y\\2z=-z-\dfrac{5}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{5}{2}\end{matrix}\right.\)

23 tháng 11 2017

đúng rồi bạn gì ơi

NV
21 tháng 1 2021

\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)

BĐT cần chứng minh trở thành:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Thật vậy, ta có:

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng AM-GM:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)

Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm

1 tháng 3 2018

a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)

Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)

Thay vào đề bài ta được:

\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z

b) Theo đề bài ta có sẵn x+y+z khác 0

Áp dụng dãy tỉ số rồi làm tương tự câu a

17 tháng 10 2017

\(a)\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{y+z+x+x+z+2+x+y-3}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)+\left(x+y+z\right)+\left(1+2-3\right)}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

Lại có: \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

\(\Rightarrow2=\dfrac{1}{x+y+z}\Rightarrow2\left(x+y+z\right)=1\Rightarrow x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{y+z+1}{x}=2\\\dfrac{x+z+2}{y}=2\\\dfrac{x+y-3}{z}=2\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y+z+1=2x\\x+z+2=2y\\x+y-3=2z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+x+1=3x\\x+y+z+2=3y\\x+y+z-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+1=3x\\\dfrac{1}{2}+2=3y\\\dfrac{1}{2}-3=3z\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1+\dfrac{1}{2}}{3}\\y=\dfrac{\dfrac{1}{2}+2}{3}\\z=\dfrac{\dfrac{1}{2}-3}{3}\\x+y+z=\dfrac{1}{2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{5}{6}\\z=\dfrac{-5}{6}\end{matrix}\right.\)

Chúc bạn học tốt!

12 tháng 11 2017

đúng rùi đó

29 tháng 11 2021

Áp dụng t/c dtsbn ta có:

\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\dfrac{1}{x+y+z}=2\Rightarrow2x+2y+2z=1\Rightarrow x+y+z=0,5\Rightarrow\left\{{}\begin{matrix}x+y=0,5-z\\y+z=0,5-x\\x+z=0,5-y\end{matrix}\right.\\ \dfrac{y+z+1}{x}=2\Rightarrow y+z+1=2x\Rightarrow0,5-x+1=2x\Rightarrow x=0,5\\ \dfrac{x+z+2}{y}=2\Rightarrow x+z+2=2y\Rightarrow0,5-y+2=2y\Rightarrow y=\dfrac{5}{6}\\ \dfrac{x+y-3}{z}=2\Rightarrow x+y-3=2z\Rightarrow0,5-z-3=2z\Rightarrow z=-\dfrac{5}{6}\)

3 tháng 9 2021

a) Ta có: \(\dfrac{x}{y}=\dfrac{10}{9}\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}\)

               \(\dfrac{y}{z}=\dfrac{3}{4}\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{9}=\dfrac{z}{12}\)

\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{9}=\dfrac{z}{12}=\dfrac{x-y+z}{10-9+12}=\dfrac{78}{13}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.10=60\\y=6.9=54\\z=6.12=72\end{matrix}\right.\)

b)Ta có:  \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

               \(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=-\dfrac{15}{5}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=-3.9=-27\\y=-3.7=-21\\z=-3.3=-9\end{matrix}\right.\)

c) \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{z^2}{9}=\dfrac{x^2+y^2+z^2}{9+16+9}=\dfrac{200}{34}=\dfrac{100}{17}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{900}{17}\\y^2=\dfrac{1600}{17}\\z^2=\dfrac{900}{17}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\pm\dfrac{30\sqrt{17}}{17}\\y=\pm\dfrac{40\sqrt{17}}{17}\\z=\pm\dfrac{30\sqrt{17}}{17}\end{matrix}\right.\)

Vậy\(\left(x;y;z\right)\in\left\{\left(\dfrac{30\sqrt{17}}{17};\dfrac{40\sqrt{17}}{17};\dfrac{30\sqrt{17}}{17}\right),\left(-\dfrac{30\sqrt{17}}{17};-\dfrac{40\sqrt{17}}{17};-\dfrac{30\sqrt{17}}{17}\right)\right\}\)

 

 

31 tháng 10 2021

Mn ơi giúp mk với , please !!!

31 tháng 10 2021

1. Ta có: \(\dfrac{x}{-7}=\dfrac{y}{4}\Rightarrow\dfrac{2x}{-14}=\dfrac{3y}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x-3y}{-14-12}=\dfrac{-78}{-26}=3\)

=> \(\left\{{}\begin{matrix}x=-21\\y=12\end{matrix}\right.\)

2. Ta có:

\(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{y}{7}=\dfrac{z}{3}\)

=> \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)

=> \(\left\{{}\begin{matrix}x=-27\\y=-21\\z=-9\end{matrix}\right.\)

7 tháng 5 2018

nhân cả 2 vế với 2 rồi bunhia

6 tháng 4 2018

câu c là \(\dfrac{1}{2}\)(x+y+z) nhé, mih chép nhầm