K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2017

Theo đề ta có:

\(\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{3}};\dfrac{b}{10}=\dfrac{c}{3}\) \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{\dfrac{10}{3}}=\dfrac{c}{1}\)\(2a+3b+4c=-54\)

Áp dụng tính chất của dãy tỉ số bẳng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{\dfrac{10}{3}}=\dfrac{c}{1}=\dfrac{2a}{2.2}=\dfrac{3b}{3.\dfrac{10}{3}}=\dfrac{4c}{4.1}=\dfrac{2a+3b+4c}{4+10+4}=\dfrac{-54}{18}=-3\)

\(\dfrac{a}{2}=-3\Rightarrow a=\left(-3\right).2=-6\)

\(\dfrac{b}{\dfrac{10}{3}}=-3\Rightarrow b=\left(-3\right).\dfrac{10}{3}=-10\)

\(\dfrac{c}{1}=-3\Rightarrow c=-3.1=-3\)

Vậy a=-6 ; b=-10 ; c=-3

17 tháng 11 2017

\(\dfrac{x}{y}=\dfrac{2}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}\)

\(\dfrac{x}{z}=\dfrac{4}{3}\Rightarrow\dfrac{x}{4}=\dfrac{z}{3}\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)

\(\Rightarrow\left\{{}\begin{matrix}x=50.4\\y=50.6\\z=50.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=200\\y=300\\z=150\end{matrix}\right.\)

17 tháng 11 2017

a) Theo đề bài ta có:

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\)\(x-y+z=50\)

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6};\dfrac{x}{4}=\dfrac{z}{3}\Rightarrow\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{x-y+z}{4-6+3}=\dfrac{50}{1}=50\)

\(\dfrac{x}{4}=50\Rightarrow x=50.4=200\)

\(\dfrac{y}{6}=50\Rightarrow y=50.6=300\)

\(\dfrac{z}{3}=50\Rightarrow z=50.3=150\)

Vậy \(x=200,y=300,z=150\)

theo đề bài ta có :

a và b tỉ lệ nghịch với 3 và 2 

=> 3a = 2b \(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{4}=\dfrac{b}{6}\) ( 1 )

b và c tỉ lệ nghịch với 3 và 2 

=> 3b = 2c => \(\dfrac{b}{2}=\dfrac{c}{3}\Rightarrow\dfrac{b}{6}=\dfrac{c}{9}\)  ( 2 )

Từ ( 1 ), ( 2 ) => \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{9}\Rightarrow\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}\)  và 2a + 3b - 4c = 100

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\dfrac{2a}{8}=\dfrac{3b}{18}=\dfrac{4c}{36}=\dfrac{2a+3b-4c}{8+18-36}=\dfrac{100}{-10}=-10\)

\(\dfrac{a}{4}=-10\Rightarrow a=-40\)

\(\dfrac{b}{6}=-10\Rightarrow b=-60\)

\(\dfrac{c}{9}=-10=>c=-90\)

Vậy 3 số a,b,c lần lượt là -40 ; -60 ; -90

 

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{20}=\dfrac{b}{10}=\dfrac{c}{15}=\dfrac{2a-3b+4c}{2\cdot20-3\cdot10+4\cdot15}=\dfrac{330}{70}=\dfrac{33}{7}\)

Do đó: a=660/7; b=300/7; c=495/7