K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2021

Có hình vẽ thì càng tốt ạ

1 tháng 4 2022

Bài 5:

\(x^2+y^2+1\ge xy+x+y\)

\(\Leftrightarrow2\left(x^2+y^2+1\right)\ge2\left(xy+x+y\right)\)

\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+2-2xy-2x-2y\ge0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\left(đúng\right)\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=1\)

Câu 3: 

\(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-3m+4\right)\)

\(=\left(2m-2\right)^2-4\left(m^2-3m+4\right)\)

\(=4m^2-16m+4-4m^2+12m-16=-4m-12\)

Để phương trình có hai nghiệm phân biệt thì -4m-12>0

=>-4m>12

hay m<-3

Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m+4\end{matrix}\right.\)

Theo đề, ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow m^2-3m+4-2m+2=0\)

=>(m-2)(m-3)=0

hay \(m\in\varnothing\)

20 tháng 12 2022

13.A

14.B

15.A

20 tháng 12 2022

13, A
14, C
15, A

2 tháng 10 2021

a) \(P=\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{9}+5}{\sqrt{9}-2}=\dfrac{3+5}{3-2}=8\)

b) \(Q=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{5\sqrt{x}-2}{4-x}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

c) \(M=\dfrac{Q}{P}=\dfrac{\sqrt{x}}{\sqrt{x}-2}:\dfrac{\sqrt{x}+5}{\sqrt{x}-2}=\dfrac{\sqrt{x}}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}+5}=\dfrac{\sqrt{x}}{\sqrt{x}+5}< \dfrac{1}{2}\)

\(\Leftrightarrow2\sqrt{x}< 3\sqrt{x}+15\Leftrightarrow\sqrt{x}>-15\left(đúng\forall x\ge0,x\ne4\right)\)

d) \(M=\dfrac{\sqrt{x}}{\sqrt{x}+5}=1-\dfrac{5}{\sqrt{x}+5}\in Z\)

\(\Rightarrow\sqrt{x}+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(x\ge0,x\ne4\)

\(\Rightarrow x\in\left\{0\right\}\)

 

2 tháng 6 2023

x + 3y = x(5y - 1)   (1)

1/x - 3/y = -2    (2)

(1) ⇔ x(5y - 1) - x = 3y

⇔ x(5y - 2) = 3y

⇔ x = 3y/(5y - 2)     (3)

Thế (3) vào (2) ta được:

(2) ⇔ 1/[3y/(5y - 2)] - 3/y = -2

⇔ (5y - 2)/3y - 3/y = -2

⇔ 5y - 2 - 9 = -6y

⇔ 5y + 6y = 11

⇔ 11y = 11

⇔ y = 1 thế vào (3) ta được:

x = 3.1/(5.1 - 2) = 1

Vậy S = {(1; 1)}

S BCD=S DHB+S DHC

=1/2*HD*HB+1/2*HD*HC

=1/2*HD*12=6*HD

=6*1/3*AH=2AH

S ABH=1/2*BH*AH=1/2*4*AH=2AH

=>S ABH=S DBC