Chứng minh các BĐT sau:
a/ \(4\left(x^3-y^3\right)\ge\left(x-y\right)^3\)
b/ \(x^3-3x+4\ge y^3-3y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\Leftrightarrow x^2+y^2\ge2xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\left(đúng\right)\)
b) \(x^3+y^3\ge\dfrac{\left(x+y\right)^3}{4}\)
\(\Leftrightarrow4x^3+4y^3\ge\left(x+y\right)^3\Leftrightarrow3x^3+3y^3\ge3x^2y+3xy^2\)
\(\Leftrightarrow3x^2\left(x-y\right)-3y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow3\left(x-y\right)\left(x^2-y^2\right)\ge0\Leftrightarrow3\left(x-y\right)^2\left(x+y\right)\ge0\left(đúng\right)\)
a: Ta có: \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\)
\(\Leftrightarrow2x^2+2y^2-x^2-2xy-y^2\ge0\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{\left(1+y\right)\left(1+z\right).64}}=\dfrac{3x}{4}\)
\(\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\)
\(\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{8}+\dfrac{1+y}{8}\ge\dfrac{3z}{4}\)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{x+y+z}{2}-\dfrac{3}{4}\ge\dfrac{3\sqrt[3]{xyz}}{2}-\dfrac{3}{4}=\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\left(đpcm\right)\)
(bài này chắc thiếu đk xyz=1 ?nên mình bổ sung xyz=1)
( xyz=3)
Áp dụng BDDT AM-GM:
Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge3\sqrt[3]{\dfrac{x^3\left(1+y\right)\left(1+z\right)}{\left(1+y\right)\left(1+z\right).8.8}}=3\sqrt[3]{\dfrac{x^3}{64}}=\dfrac{3x}{4}\)
Chứng minh tương tự ta có:
\(\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{1+z}{8}+\dfrac{1+x}{8}\ge\dfrac{3y}{4}\)
\(\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{1+x}{8}+\dfrac{1+y}{8}\ge\dfrac{3z}{4}\)
Cộng từng vế ta được:
\(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}+\dfrac{3+x+y+z}{4}\ge\dfrac{3\left(x+y+z\right)}{4}\)
\(\Leftrightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{3x+3y+3z-3-x-y-z}{4}=\dfrac{2\left(x+y+z\right)-3}{4}\)
\(\Leftrightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+x\right)\left(1+z\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{2.\sqrt[3]{xyz}-3}{4}=\dfrac{2.3-3}{4}=\dfrac{3}{4}\left(đfcm\right)\)
Đáp án A: \(x + y > 3\) là bất phương trình bậc nhất hai ẩn x và y có a=1, b=1, c=3
Đáp án B: \({x^2} + {y^2} \le 4\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án C: \(\left( {x - y} \right)\left( {3x + y} \right) \ge 1 \Leftrightarrow 3{x^2} - 2xy - {y^2} \ge 1\) không là bất phương trình bậc nhất hai ẩn vì có \({x^2},{y^2}\)
Đáp án D: \({y^3} - 2 \le 0\) không là bất phương trình bậc nhất hai ẩn vì có \({y^3}\).
Chọn A
\(2\left(x^4+y^4\right)\ge xy^3+x^3y+2x^2y^2\)
\(\Leftrightarrow\left(x^4-2x^2y^2+y^4\right)+\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+x^3\left(x-y\right)+y^3\left(y-x\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2+\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{2}\right]\ge0\) ( đúng )