so sanh \(\sqrt{5}+\sqrt{7}\) va 2\(\sqrt{6}\)
giai full giup minh nhe!thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có -14/21=-2/3=-2.2/3x2=-4/6
-60/72=-5/6
Vì -5<-4
=>-5/6<-4/6
Vậy -60/12<-14/21
a,Ta có:
\(\left(\sqrt{24}+\sqrt{45}\right)^2=24+45=69\)
\(12^2=144\)
Do 69<144 nên ...
b,tương tự ý a
x+1/3-4=-1
=>x+1/3=-1+4
=>x+1/3=3
=>x =3-1/3
=>x =8/3
Vậy x = 8/3
(2/25-1,008):4/7:(13/4-6/5/9)*36/17
=(2/25-126/125).7/4:(13/4-59/9)*36/17
=(10/125-126/125).7/4:(117/36-236/36)*36/17
=-116/125.7/4.(-36/119).36/17
=-203/125.(-1296/2023)=263088/252875
Mình tính ko nhanh đâu
1: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}\)
\(\left(2+\sqrt{6}\right)^2=10+4\sqrt{6}\)
mà 2 căn 21<4 căn 6
nên căn 3+căn 7<2+căn 6
2: \(\sqrt{7}-\sqrt{5}=\dfrac{2}{\sqrt{7}+\sqrt{5}}\)
\(\sqrt{6}-2=\dfrac{2}{\sqrt{6}+2}\)
mà \(\sqrt{7}+\sqrt{5}>\sqrt{6}+2\)
nên \(\sqrt{7}-\sqrt{5}< \sqrt{6}-2\)
3: \(\sqrt{11}-\sqrt{7}=\dfrac{4}{\sqrt{11}+\sqrt{7}}\)
\(\sqrt{7}-\sqrt{3}=\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
mà căn 11>căn 3
nên \(\sqrt{11}-\sqrt{7}< \sqrt{7}-\sqrt{3}\)
\(a,\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
\(=\sqrt{3+2\sqrt{2.3}+2}-\sqrt{3-2\sqrt{2.3}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}\)
\(b,\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5-2\sqrt{2.5}+2}-\sqrt{5+2\sqrt{5.2}+2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
\(=-2\sqrt{2}\)
a) \(\sqrt{5+2\sqrt{6}}\) -\(\sqrt{5-2\sqrt{6}}\)
=\(\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
=/\(\sqrt{3}+\sqrt{2}\)/ \(-\)/\(\sqrt{3}-\sqrt{2}\) /
=\(\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)\)
=\(\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\)
=\(2\sqrt{2}\)
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
=\(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
=/\(\sqrt{5}-\sqrt{2}\) / \(-\) /\(\sqrt{5}+\sqrt{2}\)/
=\(\sqrt{5}-\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)\)
=\(\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)
=\(-2\sqrt{2}\)
Ta có\(\sqrt[3]{2}=1,25992105\\ \sqrt[2]{3}=1,732050808\)
=> 1,25992105<1,73205080 =>\(\sqrt[3]{2}< \sqrt[2]{3}\)
2003/2004 + 2004/2005 + 2005/2003
= 1 - 1/2004 + 1 - 1/2005 + 1 + 1/2003 + 1/2003
=(1+1+1)-(1/2004 - 1/2003 + 1/2005 - 1/2003)
= 3 - (1/2004 - 1/2003 + 1/2005 - 1/2003)
Vì 1/2004 < 1/2003 ; 1/2005 < 1/2003
=>1/2004 - 1/2003 + 1/2005 - 1/2003 < 0
=> 3 - (...) > 3
Vậy. ...
K mình nha
Ta có : \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+7+2\sqrt{35}\)
=\(12+2\sqrt{35}\le12+2\sqrt{36}=12+2.6=24\)
Mà \(\left(2\sqrt{6}\right)^2=24\)
Do đó \(\left(\sqrt{5}+\sqrt{7}\right)^2< \left(2\sqrt{6}\right)^2\)
Mà \(\sqrt{5}+\sqrt{7}>0\) và \(2\sqrt{6}>0\)
Vậy \(\sqrt{5}+\sqrt{7}< 2\sqrt{6}\)