Cho hinh vuong ABCD canh a va M la diem di dong tren duong cheo AC. ME\(\perp\) AB, MF\(\perp BC\) . Xac dinh vi tri cua M tren AC de dien tich tam giac DEF nho nhat. Tinh gia tri do theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông
Cho Tam giác ABC có điểm M trên cạnh BC. Vẽ tia ME song song với AB (E thuộc AC). F song song với AC (F thuộc AB). Xác định vị trí của điểm M để tia MA là tia phân giác của góc EMF