chứng minh trong 5 số tự nhiên bất kì khi chia 4 thì ít nhất có 2 số mà hiệu của chúng chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 6 số bất kỳ là a, b, c, d, e, f. Ta thấy rằng khi chia cho 5 dư 0,1,2,3,4. Ta thấy chỉ có 5 số dư vậy khi chọn 6 số bất kỳ sẽ có 2 số có cùng số dư nên hiệu của chúng sẽ kết thúc là số 0. Vậy trong 6 số bất kỳ có ít nhất 2 số mà hiệu của chúng chia hết cho 5.
Ta đã biết 1 số tự nhiên khi chia cho 5 chỉ có thể có 5 loại số dư là dư 0; 1; 2; 3; 4; 5. Có 6 số mà chỉ có 5 loại số dư nên theo nguyên lí Đirichlet sẽ có ít nhất 2 số cùng dư
Hiệu của 2 số này chia hết cho 5
Chứng tỏ với 6 số tự nhiên bất kì, luôn có ít nhất 2 số tự nhiên mà hiệu của chúng chia hết cho 5
Các số tự nhiên khi chia cho 3 chỉ có thể dư 0,1 hoặc 2.
Áp dụng nguyên lý Đi-rích-lê, ta có:
Trong 4 số tự nhiên bất kỳ bao giờ cũng sẽ có 2 số cùng số dư khi chia cho 3, do đó hiệu của chúng sẽ chia hết cho 3.
Bn an vao chu xanh Chứng minh rằng trong 4 số tự nhiên bất kì bao giờ cũng có 2 số có hiệu chia hết cho 3 tick nha Nguyễn Phương Ly