cho a+b=3
tìm GTNN cùa a2+b2
giúp nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=-x^2+12x+8=-\left(x-6\right)^2+44\le44\)
\(M_{max}=44\) khi \(x=6\)
\(N=a^2+9b^2+5a-6b=\left(a+\dfrac{5}{2}\right)^2+\left(3b-1\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\)
\(N_{min}=-\dfrac{41}{4}\) khi \(\left(a;b\right)=\left(-\dfrac{5}{2};\dfrac{1}{3}\right)\)
\(Q=3\left(a-5\right)^2-82\ge-82\)
\(Q_{min}=-82\) khi \(a=5\)
\(A=\dfrac{a^2+a-1}{a^2+a+1}\)
\(\Leftrightarrow\left(A-1\right)a^2+\left(A-1\right)a+A+1=0\)
Để PT theo nghiệm a có nghiệm thì
\(\Delta=\left(A-1\right)^2-4\left(A-1\right)\left(A+1\right)\ge0\)
\(\Leftrightarrow-3A^2-2A+5\ge0\)
\(\Leftrightarrow-\dfrac{5}{3}\le A\le1\)
Vậy \(\left\{{}\begin{matrix}max=1\\min=-\dfrac{5}{3}\end{matrix}\right.\)
\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)
Tương tự, ta có:
\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Ta sẽ chứng minh BĐT sau: a^2+b^2+c^2>=ab+ac+bc với mọi a,b,c
\(a^2+b^2+c^2>=ab+bc+ac\)
=>\(2a^2+2b^2+2c^2>=2ab+2bc+2ac\)
=>\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2>=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)
a: ab+ac+bc>=3
mà a^2+b^2+c^2>=ab+ac+bc(CMT)
nên a^2+b^2+c^2>=3
Dấu = xảy ra khi a=b=c=1
Khi a=b=c=1 thì A=1+1+1+10=13
b: a^2+b^2+c^2<=8
Dấu = xảy ra khi \(a^2=b^2=c^2=\dfrac{8}{3}\)
=>\(a=b=c=\dfrac{2\sqrt{2}}{\sqrt{3}}=\dfrac{2\sqrt{6}}{3}\)
Khi \(a=b=c=\dfrac{2\sqrt{6}}{3}\) thì \(B=\dfrac{2\sqrt{6}}{3}\cdot3-5=2\sqrt{6}-5\)
\(\)đặt \(2x^2+y^2+\dfrac{28}{x}+\dfrac{1}{y}=A\)
\(=>A=2x^2+y^2-7x-y+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2x^2-8x+8+y^2-2y+1+x+y-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
\(A=2\left(x-2\right)^2+\left(y-1\right)^2+\left(x+y\right)-9+\dfrac{28}{x}+7x+\dfrac{1}{y}+y\)
áp dụng BDT AM-GM\(=>\dfrac{28}{x}+7x+\dfrac{1}{y}+y\ge2\sqrt{28.7}+2\sqrt{1}=30\)
\(=>A\ge30+3-9=24\)
dấu"=" xảy ra<=>x=2,y=1
\(D=\dfrac{-x+3+1}{x-3}=-1+\dfrac{1}{x-3}\)
D min khi x-3=-1
=>x=2
a)Có \(a^2+1\ge2a\) với mọi a; \(b^2+1\ge2b\) với mọi b
Cộng vế với vế \(\Rightarrow a^2+b^2+2\ge2\left(a+b\right)\)
Dấu = xảy ra <=> a=b=1
b) Áp dụng BĐT bunhiacopxki có:
\(\left(x+y\right)^2\le\left(1+1\right)\left(x^2+y^2\right)\Leftrightarrow\left(x+y\right)^2\le2\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
\(\Rightarrow\left(x+y\right)_{max}=\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=\dfrac{\sqrt{2}}{2}\)
\(\left(x+y\right)_{min}=-\sqrt{2}\Leftrightarrow\left\{{}\begin{matrix}x+y=-\sqrt{2}\\x=y\end{matrix}\right.\)\(\Leftrightarrow x=y=-\dfrac{\sqrt{2}}{2}\)
c) \(S=\dfrac{1}{ab}+\dfrac{1}{a^2+b^2}=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{2ab}\)
Với x,y>0, ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) (1)
Thật vậy (1) \(\Leftrightarrow\dfrac{y+x}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)\(\Leftrightarrow\left(x-y\right)^2\ge0\) (lđ)
Áp dụng (1) vào S ta được:
\(S\ge\dfrac{4}{a^2+b^2+2ab}+\dfrac{1}{2ab}\)
Lại có: \(ab\le\dfrac{\left(a+b\right)^2}{4}\) \(\Leftrightarrow2ab\le\dfrac{\left(a+b\right)^2}{2}\Leftrightarrow2ab\le\dfrac{1}{2}\)\(\Rightarrow\dfrac{1}{2ab}\ge2\)
\(\Rightarrow S\ge\dfrac{4}{\left(a+b\right)^2}+2=6\)
\(\Rightarrow S_{min}=6\Leftrightarrow a=b=\dfrac{1}{2}\)
bạn xem đi nhé , có thể dùng hình ảnh có thể khó hiểu nên bạn xem vẫn chưa hiểu thì có thể vào kênh THẰNG THẦY LỢI để hỏi và được dựng video riêng nhé cám ơn
áp dụng bđt cosi ta có :
\(a^2+\frac{9}{4}\ge3a\);\(b^2+\frac{9}{4}\ge3b\)
cộng theo vế ta được :
\(a^2+b^2\ge3\left(a+b\right)-\frac{9}{2}=9-\frac{9}{2}=\frac{9}{2}\)
dấu "=" xảy ra <=> a = b = 3/2