Rút gọn a) 𝐴 = 𝑥^ 2 (𝑎 − 𝑏) + 𝑏(1 − 𝑥) + 𝑥(𝑏𝑥 + 𝑏) − 𝑎𝑥(𝑥 + 1) b) 𝐵 = 𝑥 2 (11𝑥 − 2) + 𝑥 2 (𝑥 − 1) − 3𝑥(4𝑥 2 − 𝑥 − 2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho mình sửa lại câu d nhé
⇔(x+1)2=\(\frac{4}{3}\)
⇔\(\left[{}\begin{matrix}x+1=\sqrt{\frac{4}{3}}\\x+1=-\sqrt{\frac{4}{3}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{4}{3}}-1\\x=-\sqrt{\frac{4}{3}}-1\end{matrix}\right.\)
a, 2x - x - 3 + 4 = -x - 3
\(\Leftrightarrow\) x + 1 = -x - 3
\(\Leftrightarrow\) x + x = -3 - 1
\(\Leftrightarrow\) 2x = -4
\(\Leftrightarrow\) x = -2
Vậy S = {-2}
b, 3x - 22x + 5 = 6x + 14x - 3
\(\Leftrightarrow\) -19x + 5 = 20x - 3
\(\Leftrightarrow\) -19x - 20x = -3 - 5
\(\Leftrightarrow\) -39x = -8
\(\Leftrightarrow\) x = \(\frac{8}{39}\)
Vậy S = {\(\frac{8}{39}\)}
c, x + 3x + 1 + x - 2x = 2
\(\Leftrightarrow\) 3x + 1 = 2
\(\Leftrightarrow\) 3x = 2 - 1
\(\Leftrightarrow\) 3x = 1
\(\Leftrightarrow\) x = \(\frac{1}{3}\)
Vậy S = {\(\frac{1}{3}\)}
Phần d mình ko hiểu, bạn viết rõ được ko!
Chúc bn học tốt!!
a: Ta có: \(A=-x^2+2x+5\)
\(=-\left(x^2-2x-5\right)\)
\(=-\left(x^2-2x+1-6\right)\)
\(=-\left(x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi x=1
b: Ta có: \(B=-x^2-8x+10\)
\(=-\left(x^2+8x-10\right)\)
\(=-\left(x^2+8x+16-26\right)\)
\(=-\left(x+4\right)^2+26\le26\forall x\)
Dấu '=' xảy ra khi x=-4
c: Ta có: \(C=-3x^2+12x+8\)
\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)
\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)
\(=-3\left(x-2\right)^2+20\le20\forall x\)
Dấu '=' xảy ra khi x=2
d: Ta có: \(D=-5x^2+9x-3\)
\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)
\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)
\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)
e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)
\(=4x+24-x^2-6x\)
\(=-x^2-2x+24\)
\(=-\left(x^2+2x-24\right)\)
\(=-\left(x^2+2x+1-25\right)\)
\(=-\left(x+1\right)^2+25\le25\forall x\)
Dấu '=' xảy ra khi x=-1
f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)
\(=8x-6x^2+20-15x\)
\(=-6x^2-7x+20\)
\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)
\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)
\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)
\(a,=\left(4x^2-1\right)\left(2x-5\right)=8x^3-20x^2-2x+5\\ b,=\left[x^2+\left(x-3\right)\right]\left[x^2-\left(x-3\right)\right]=x^4-\left(x-3\right)^2\\ =x^4-x^2+6x-9\)
b: Ta có: \(B=x^2\left(11x-2\right)+x^2\left(x-1\right)-3x\left(4x^2-x-2\right)\)
\(=11x^3-2x^2+x^3-x^2-12x^3+3x^2+6x\)
\(=6x\)