K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AIHK có 

\(\widehat{KAI}=\widehat{AKH}=\widehat{AIH}=90^0\)

Do đó: AIHK là hình chữ nhật

b: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AH^2=BH\cdot CH\)

2 tháng 9 2021

A) Xét tg AIHK có I = 90 độ( I là hình chiếu của H)

                             A=90 độ( tg ABC vg tại A)

                             K=90 độ( K là hình chiếu của H)

=> tg AIHK là hcn (dh1)

B) Xét tg ABC và tg ABH có A=H=90 độ

                                            B chung

=> tg ABC~tg ABH(g.g)

Xét tg ABC và tg HAC có A=H=90 độ

                                        C chung

=> tg ABC ~ tg HAC ( g.g)

=> tg ABH~ Tg HAC(~ tg ABC)

=> AB/AH=AH/CH<=>AH2=BH.CH

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hcn

b: AIHK là hcn

=>góc AIK=góc AHK=góc C

=>ΔAIK đồng dạng với ΔACB

10 tháng 3 2015

a) tứ giác AIHK có: góc IAK=AIH=IHK=90 ĐỘ nên là hcn

 

14 tháng 2 2016

moi hok lop 6

a: góc AIH=góc AKH=góc KAI=90 độ

=>AIHK là hình chữ nhật

=>AH=IK

b: ΔAHB vuông tại H có HI là đường cao

nên AI*AB=AH^2

ΔAHC vuông tại H có HK là đường cao

nên AK*AC=AH^2

=>AI*AB=AK*AC

NV
2 tháng 8 2021

a. Ta có tứ giác AIHK là hình chữ nhật (tứ giác có 3 góc vuông)

\(\Rightarrow\widehat{IKH}=\widehat{IAH}\) 

Mà \(\widehat{IAH}=\widehat{KCH}\) (cùng phụ \(\widehat{ABC}\))

\(\Rightarrow\widehat{IKH}=\widehat{KCH}\)

b.

Gọi D và E lần lượt là trung điểm IH và HK

\(\Rightarrow\) MD và NE lần lượt là đường trung bình các tam giác BIH và HKC

\(\Rightarrow\left\{{}\begin{matrix}MD\perp HI\\MD=\dfrac{1}{2}BI\end{matrix}\right.\) và \(\left\{{}\begin{matrix}NE\perp HK\\NE=\dfrac{1}{2}CK\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}S_{MIH}=\dfrac{1}{2}MD.IH=\dfrac{1}{2}.\dfrac{1}{2}BI.IH=\dfrac{1}{2}S_{BIH}\\S_{NHK}=\dfrac{1}{2}NE.HK=\dfrac{1}{2}.\dfrac{1}{2}CK.HK=\dfrac{1}{2}S_{HCK}\end{matrix}\right.\)

Đồng thời AIHK là hình chữ nhật \(\Rightarrow S_{IHK}=\dfrac{1}{2}S_{AIHK}\)

Do đó:

\(S_{MNKI}=S_{MIH}+S_{NHK}+S_{IHK}=\dfrac{1}{2}\left(S_{BIH}+S_{AIHK}+S_{HCK}\right)=\dfrac{1}{2}S_{ABC}\) (đpcm)

NV
2 tháng 8 2021

undefined

16 tháng 12 2023

a: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

b: ta có: ADHE là hình chữ nhật

=>AH cắt DE tại trung điểm của mỗi đường

mà O là trung điểm của AH

nên O là trung điểm của DE

c: Ta có: ADHE là hình chữ nhật

=>DH=AE và DH//AE

Ta có: DH//AE
M\(\in\)AE

Do đó: DH//AM

Ta có: DH=AE

AE=AM

DO đó: DH=AM

Xét tứ giác AHDM có

DH//AM

DH=AM

Do đó: AHDM là hình bình hành

=>AH//MD

=>AO//MD

16 tháng 12 2023

C.ơnnnn