K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
4 tháng 9 2021

ta có hàm số 

\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)

vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)

Vậy có hai giá trị của m 

9 tháng 11 2019

Đáp án D

Nhắc lại quy tắc vẽ đồ thị hàm số  y = f x    từ đồ thị hàm số   y = f x

-         Phần 1: Giữ nguyên phần đồ thị hàm số  y = f x   bên phải trục Oy (bỏ phần bên trái)

-         Phần 2: Lấy đối xứng phần đồ thị hàm số  y = f x   bên phải trục O qua trục  O

-         Hợp của 2 phần, ta được đồ thị hàm số y = f x

Xét  y = f x = 1 3 x 3 − 2 x 2 + m − 1 x + 3 với   f x = 1 3 x 3 − 2 x 2 + m − 1 x + 3

Để hàm số y = f x  có 5 điểm cực trị   ⇔ y = f x có 2 điểm cực trị nằm phía bên phải trục  Oy  ⇔ f ' x = 0  có 2 nghiệm dương phân biệt  ⇔ x 2 − 4 x + m − 1 = 0    có 2 nghiệm dương phân biệt x 1 ,   x 2

  ⇔ Δ > 0 x 1 + x 2 > 0 x 1 x 2 > 0 ⇔ 5 − m > 0 m − 1 > 0 ⇔ 1 < m < 5 . Kết hợp   m ∈ ℤ → m = 2 ; 3 ; 4

23 tháng 9 2019

Đáp án C

Xét hàm số f x = x 2 − 2 x + m trên đoạn [-1;2]

Tạ có:  f ' x = 2 x − 2 = 0 ⇒ x = 1

Lại có:  f 0 = m ; f − 1 = m − 1 ; f 2 = m + 2

Do đó  f x ∈ m − 1 ; m + 2

Nếu  m − 1 ≥ 0 ⇒ max 0 ; 2 f x = m + 2 = 5 ⇔ m = 3

Nếu m − 1 < 0 suy ra  max 0 ; 2 f x = m + 2 max 0 ; 2 f x = 1 − m

Ÿ TH1: max 0 ; 2 f x = m + 2 = 5 ⇔ m = 3 k o _ t / m

Ÿ TH2: max 0 ; 2 f x = 1 − m ⇔ m = − 4 ⇒ m + 1 = − 3 t / m  

 Vậy m = 3 ; m = − 4  là giá trị cần tìm

22 tháng 11 2019

30 tháng 7 2018

 

Chọn C.

 

 

Phương pháp: Biện luận theo m.

 

 

NV
20 tháng 1 2021

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)