chứng tỏ rằng 4x-x2-5<0 với mọi x
giúp mik nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 4x – x 2 – 5 = -( x 2 – 4x + 4) – 1 = - x - 2 2 -1
Vì x - 2 2 ≥ 0 với mọi x nên – x - 2 2 ≤ 0 với mọi x.
Suy ra: - x - 2 2 -1 ≤ -1 với mọi x
Vậy 4x – x 2 – 5 < 0 với mọi x.(đpcm)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
Thay x = -1; x = 5 vào đa thức f(x) = x2 – 4x – 5, ta có:
f(-1) = (-1)2 – 4.(-1) – 5 = 1 + 4 – 5 = 0
f(5) = 52 – 4.5 – 5 = 25 – 20 – 5 = 0
Vậy x = -1 và x = 5 là các nghiệm của đa thức f(x) = x2 – 4x – 5
a, \(x^2\) + 4\(x\) + 10
= ( \(x^2\) + 4\(x\) + 4) + 6
= (\(x\) + 2)2 + 6
vì (\(x\) + 2)2 ≥ 0
⇒ (\(x\) + 2)2 + 6 ≥ 6 > 0 vậy đa thức đã cho vô nghiệm (đpcm)
b, \(x^2\) - 2\(x\) + 5
= (\(x^2\) - 2\(x\) + 1) + 4
= (\(x\) - 1)2 + 4
Vì (\(x\) - 1)2 ≥ 0 ⇒ (\(x\) -1)2 + 4≥ 4 > 0
Vậy đa thức đã cho vô nghiệm (đpcm)
a: \(\dfrac{7x^3y^4}{35xy}=\dfrac{7xy\cdot x^2y^3}{7xy\cdot5}=\dfrac{x^2y^3}{5}\)
b: \(\dfrac{x^3-4x}{10-5x}=\dfrac{-x\left(x-2\right)\left(x+2\right)}{5\left(x-2\right)}=\dfrac{-x\left(x+2\right)}{5}=\dfrac{-x^2-2x}{5}\)
c: \(\dfrac{\left(x+2\right)\left(x+1\right)}{x^2-1}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{x+2}{x-1}\)
d: \(\left(x^2-x-2\right)\left(x-1\right)\)
\(=\left(x-2\right)\left(x+1\right)\left(x-1\right)\)
\(=\left(x^2-3x+2\right)\left(x+1\right)\)
=>\(\dfrac{x^2-x-2}{x+1}=\dfrac{x^2-3x+2}{x-1}\)
e: \(\dfrac{x^3+8}{x^2-2x+4}=\dfrac{\left(x+2\right)\left(x^2-2x+4\right)}{x^2-2x+4}=x+2\)
a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)
b) \(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\forall x\)
\(a,=6x^2+23x+21-\left(6x^2+23x-55\right)\\ =76\left(đpcm\right)\\ b,=3x^4+6x^3+9x^2-2x^3-4x^2-6x+x^2+2x+3-4x^3+4x-3x^4-6x^2\\ =3\left(đpcm\right)\)
4x-x^2-5 = -(x^2-4x)-5
\(\Rightarrow\) -(x^2-2x.2+4-4)-5 = -(x-2)^2+4-5 = -(x-2)^2-1
Vì -(x-2)^2 ≤0 vs moi x nên -(x-2)^2-1<0 vs moi x
Vậy 4x-x^2-5<0 với mọi x
Đúng thì tick nha
\(4x-x^2-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< -1< 0\forall x\)