K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 10 2018

Lời giải:

Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)

\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)

Do đó:

\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)

\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)

............

\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)

Cộng theo vế:

\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)

\(=\underbrace{1+1+1...+1}_{1008}=1008\)

10 tháng 11 2017

Ta thấy \(2m^2-5m+7=2\left(m^2-\frac{5}{2}m+\frac{25}{16}\right)+\frac{31}{8}=2\left(m-\frac{5}{4}\right)^2+\frac{31}{8}>0\)

Vậy nên hàm số \(y=f\left(x\right)\) là hàm số đồng biến.

Ta thấy \(1-\sqrt{2015}>1-\sqrt{2017}\Rightarrow f\left(1-\sqrt{2015}\right)>f\left(1-\sqrt{2017}\right)\)

29 tháng 5 2017

Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)

Xét hai số a, b dương sao cho \(a+b=1\)

Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)

\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)

\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)

Áp dụng vào bài toán ta được

\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)

\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)

\(=1+1+...+1=1008\)

29 tháng 5 2017

Câu 2/

\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)

Ta có:

\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)

Thế ngược lại (1) giải tiếp sẽ ra nghiệm.

11 tháng 12 2017

\(y=f\left(x\right)\dfrac{2017^{2x}}{2017^{2x}+2017}\)

\(\Rightarrow\left\{{}\begin{matrix}f\left(a\right)=\dfrac{2017^{2a}}{2017^{2a}+2017}\\f\left(b\right)=\dfrac{2017^{2b}}{2017^{2b}+2017}\end{matrix}\right.\)

\(\Rightarrow f\left(a\right)+f\left(b\right)=\dfrac{2017^{2a}}{2017^{2a}+2017}+\dfrac{2017^{2b}}{2017^{2b}+2017}\)

\(=\dfrac{2017^{2a}\left(2017^{2b}+2017\right)}{\left(2017^{2a}+2017\right)\left(2017^{2b}+2017\right)}+\dfrac{2017^{2b}\left(2017^{2a}+2017\right)}{\left(2017^{2a}+2017\right)\left(2017^{2b}+2017\right)}\)

\(=\dfrac{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2\left(a+b\right)}+2017^{2b+1}}{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2b+1}+2017^2}\)

\(=\dfrac{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2\left(a+b\right)}+2017^{2b+1}}{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2\left(a+b\right)}+2017^{2b+1}}=1\) (Vì a+b=1)

P/S:Nhìn chữ \(f\left(a\right)\) thấy khổ cho số phận mềnh quá :((

11 tháng 12 2017

Bao giờ xong thì tag Phạm Quốc Cường lên xem lời giải nhé em