Cho \(f\left(m\right)=\dfrac{2017^{2m}}{2017^{2m}+2017}\)
Tính \(f\left(p\right)+f\left(q\right)\) biết \(p+q=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy: \(f(x)=\frac{x^3}{1-3x+3x^2}\Rightarrow f(1-x)=\frac{(1-x)^3}{1-3(1-x)+3(1-x)^2}=\frac{(1-x)^3}{3x^2-3x+1}\)
\(\Rightarrow f(x)+f(1-x)=\frac{x^3}{1-3x+3x^2}+\frac{(1-x)^3}{3x^2-3x+1}=\frac{x^3+(1-x)^3}{3x^2-3x+1}=1\)
Do đó:
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)=1\)
\(f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)=1\)
............
\(f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)=1\)
Cộng theo vế:
\(\Rightarrow A=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+f\left(\frac{3}{2017}\right)+...f\left(\frac{2015}{2017}\right)+f\left(\frac{2016}{2017}\right)\)
\(=\underbrace{1+1+1...+1}_{1008}=1008\)
Ta thấy \(2m^2-5m+7=2\left(m^2-\frac{5}{2}m+\frac{25}{16}\right)+\frac{31}{8}=2\left(m-\frac{5}{4}\right)^2+\frac{31}{8}>0\)
Vậy nên hàm số \(y=f\left(x\right)\) là hàm số đồng biến.
Ta thấy \(1-\sqrt{2015}>1-\sqrt{2017}\Rightarrow f\left(1-\sqrt{2015}\right)>f\left(1-\sqrt{2017}\right)\)
Ta có: \(\frac{1}{f\left(x\right)}-1=\frac{\left(1-x\right)^3}{x^3}\)
Xét hai số a, b dương sao cho \(a+b=1\)
Ta có: \(\hept{\begin{cases}\frac{1}{f\left(a\right)}-1=\frac{\left(1-a\right)^3}{a^3}\\\frac{1}{f\left(b\right)}-1=\frac{\left(1-b\right)^3}{b^3}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1-f\left(a\right)}{f\left(a\right)}=\frac{\left(1-a\right)^3}{a^3}\\\frac{1-f\left(b\right)}{f\left(b\right)}=\frac{a^3}{\left(1-a\right)^3}\end{cases}}\)
\(\Rightarrow\frac{1-f\left(a\right)}{f\left(a\right)}.\frac{1-f\left(b\right)}{f\left(b\right)}=1\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=1\)
Áp dụng vào bài toán ta được
\(f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+...+f\left(\frac{2016}{2017}\right)\)
\(=\left[f\left(\frac{1}{2017}\right)+f\left(\frac{2016}{2017}\right)\right]+\left[f\left(\frac{2}{2017}\right)+f\left(\frac{2015}{2017}\right)\right]+...+\left[f\left(\frac{1008}{2017}\right)+f\left(\frac{1009}{2017}\right)\right]\)
\(=1+1+...+1=1008\)
Câu 2/
\(\hept{\begin{cases}2x^2-y^2+xy+3y=2\left(1\right)\\x^2-y^2=3\left(2\right)\end{cases}}\)
Ta có:
\(\left(1\right)\Leftrightarrow\left(x+y-1\right)\left(2x-y+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=1-x\\y=2x+2\end{cases}}\)
Thế ngược lại (1) giải tiếp sẽ ra nghiệm.
\(y=f\left(x\right)\dfrac{2017^{2x}}{2017^{2x}+2017}\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(a\right)=\dfrac{2017^{2a}}{2017^{2a}+2017}\\f\left(b\right)=\dfrac{2017^{2b}}{2017^{2b}+2017}\end{matrix}\right.\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\dfrac{2017^{2a}}{2017^{2a}+2017}+\dfrac{2017^{2b}}{2017^{2b}+2017}\)
\(=\dfrac{2017^{2a}\left(2017^{2b}+2017\right)}{\left(2017^{2a}+2017\right)\left(2017^{2b}+2017\right)}+\dfrac{2017^{2b}\left(2017^{2a}+2017\right)}{\left(2017^{2a}+2017\right)\left(2017^{2b}+2017\right)}\)
\(=\dfrac{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2\left(a+b\right)}+2017^{2b+1}}{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2b+1}+2017^2}\)
\(=\dfrac{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2\left(a+b\right)}+2017^{2b+1}}{2017^{2\left(a+b\right)}+2017^{2a+1}+2017^{2\left(a+b\right)}+2017^{2b+1}}=1\) (Vì a+b=1)
P/S:Nhìn chữ \(f\left(a\right)\) thấy khổ cho số phận mềnh quá :((
Bao giờ xong thì tag Phạm Quốc Cường lên xem lời giải nhé em