BA ĐỘI CÔNG NHÂN A , B ,C PHAI VẬN CHUYỂN TỔNG CỘNG 1530 Kg , HÀNG TỪ KHO THEO THỨ TỰ ĐẾN 3 ĐIỂM CÁCH KHO 1500m , 2000m , 3000m . HÃY PHÂN CHIA SỐ HÀNG CHO MỖI ĐỘI SAO CHO KHỐI LƯỢNG HÀNG TỈ LỆ NGHỊCH VỚI KHOẢNG CÁCH VẬN CHUYỂN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi số hàng mỗi đội chuyển lần lượt là $a,b,c$ (kg)
Theo bài ra ta có:
$a+b+c=1530$
$1500a=2000b=3000c$
$\Leftrightarrow 15a=20b=30c$
$\Leftrightarrow \frac{a}{4}=\frac{b}{3}=\frac{c}{2}$
Áp dụng TCDTSBN: $\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a+b+c}{4+3+2}=\frac{1530}{9}=170$
$\Rightarrow a=4.170=680; b=170.3=510; c=170.2=340$ (kg hàng)
hkfsghsgkfahugfkagfyagjfggfjgagiggfàedưGGKEHGGBKHGSHGKHKfagỳgsagỳgyfgkàgagjfuagjgfuagùuahjdgaygfjakfa
đây là cau tra loi
Gọi số hàng cần chuyển của đội I II III lần lượt là x;y;z
Theo bài ra x;y;z t
Giả sử số hàng ba đội công I, II, III phải vận chuyển đến từ kho lần lượt là a, b, c (kg) (a, b, c > 0)
Vì Ba đôi công I , II ,III phải vận chuyển tổng công 1530 kg hàng nên a + b + c = 1530
Vì phân chia số hàng cho mỗi đội sao cho khối lượng hàng tỉ lệ nghịch với khoảng cách nên ta có:
1500a = 2000b = 3000c
\(\Rightarrow\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)
Áp dụng t/c của dãy TSBN ta có:
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a+b+c}{4+3+2}=\frac{1530}{9}=170\)
Suy ra: a = 170 . 4 = 680 (t/m)
b = 170 . 3 = 510 (t/m)
c = 170 . 2 = 340 (t/m)
Vậy sử số hàng ba đội công I, II, III phải vận chuyển đến từ kho lần lượt là 680kg, 510kg, 340kg
Gọi số hàng ở khoảng cách 1500m là a, số hàng ở khoảng cách 2000m là b, số hàng ở khoảng cách 3000m là c.
Theo bài ra ta có:
\(\frac{a}{\frac{1}{1500}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}\) và a + b + c = 1530
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{\frac{1}{1500}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}=\frac{a+b+c}{\frac{1}{1500}+\frac{1}{2000}+\frac{1}{3000}}=\frac{1530}{\frac{12}{10000}}=1275000\)
Từ đây tìm a,b,c
Để chi 1530 kg thành ba phần tỉ lệ nghịch với 1500 ; 2000 ; 3000 , ta chia nó thành ba phần tỉ lệ thuận với \(\frac{1}{1500};\frac{1}{2000};\frac{1}{3000}\)tức là tỉ lệ thuận với \(4:3:2\)( bằng cách nhân mỗi phân số với 6000 , là BCNN của 1500 , 2000 , 3000)
Gọi số hàng của đội I , II , III phải vận chuyển lần lượt là x,y,z ( kg) \(\left(x,y,z>0\right)\)
Theo bài ra ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\) và \(x+y+z=1530\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có ;
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{4+3+2}=\frac{1530}{9}=170\)
\(\Rightarrow x=170.4=680\left(t/m\right)\)
\(y=170.3=510\left(t/m\right)\)
\(z=170.2=340\left(t/m\right)\)
Vậy số hàng của đội I , II , III phải vận chuyển lần lượt là : \(680,510,340kg\)
Chúc bạn học tốt !!!
Gọi số hàng cách 1500 cm là a). Số hàng ở khoảng cách 2000 m là b). Số hàng ở khoảng cách 3000 m là c)
Theo đề bài, ta có:
\(\frac{a}{\frac{1}{5000}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}\) và a + b + c = 1530 kg
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{1}{5000}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}=\frac{a+b+c}{\frac{1}{5000}+\frac{1}{2000}+\frac{1}{3000}}=\frac{1530}{\frac{15}{10000}}=1020000\)
Ta có:
\(\frac{a}{\frac{1}{1500}}=1020000\Rightarrow a=1020000.\frac{1}{1500}=680\)
\(\frac{b}{\frac{1}{2000}}=1020000\Rightarrow b=1020000.\frac{1}{2000}=510\)
\(\frac{c}{\frac{1}{3000}}=102000\Rightarrow c=1020000.\frac{1}{3000}=340\)
Gọi số hàng ở khoảng cách 1500m là a, số hàng ở khoảng cách 2000m là b, số hàng ở khoảng cách 3000m là c.
Theo bài ra ta có:
\(\frac{a}{\frac{1}{1500}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}\) và a + b + c = 1530
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{\frac{1}{1500}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}=\frac{a+b+c}{\frac{1}{1500}+\frac{1}{2000}+\frac{1}{3000}}=\frac{1530}{\frac{12}{10000}}=1275000\)
Từ đây tìm a,b,c
làm lại:
Gọi số hàng ở khoảng cách 1500m là a, số hàng ở khoảng cách 2000m là b, số hàng ở khoảng cách 3000m là c.
Theo bài ra ta có:
\(\frac{a}{\frac{1}{1500}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}\) và a + b + c = 1530
Áp dụng tính chất dãy tỉ số bằng nhau, có:
\(\frac{a}{\frac{1}{1500}}=\frac{b}{\frac{1}{2000}}=\frac{c}{\frac{1}{3000}}=\frac{a+b+c}{\frac{1}{1500}+\frac{1}{2000}+\frac{1}{3000}}=\frac{1530}{\frac{15}{10000}}=1020000\)
Ta có: \(\frac{a}{\frac{1}{1500}}=1020000\Rightarrow a=1020000\cdot\frac{1}{1500}=680\)
\(\frac{b}{\frac{1}{2000}}=1020000\Rightarrow b=1020000\cdot\frac{1}{2000}=510\)
\(\frac{c}{\frac{1}{3000}}=1020000\Rightarrow c=1020000\cdot\frac{1}{3000}=340\)
Tỷ lệ nghịch giữa khối lượng hàng và khoảng cách cần chuyển được tính bằng công thức: Tỷ lệ = khối lượng hàng / khoảng cách cần chuyển.
Đầu tiên, hãy tính nghịch lý giữa các khối lượng và khoảng cách cần chuyển cho từng địa điểm:
- Đối với địa điểm 1 (cách kho 1,5 km): Tỷ lệ = 3,06 tấn / 1,5 km = 2,04 tấn/km
- Đối với địa điểm 2 (cách kho 2 km): Tỷ lệ = 3,06 tấn / 2 km = 1,53 tấn/km
- Đối với địa điểm 3 (cách kho 3 km): Tỷ lệ = 3,06 tấn / 3 km = 1,02 tấn/km
Tiếp theo, ta chia số lượng hàng cho mỗi đội theo Tỷ lệ nghịch đã tính:
- Đội 1: 2,04 tấn/km * 1,5 km = 3,06 tấn
- Đội 2: 1,53 tấn/km * 2 km = 3,06 tấn
- Đội 3: 1,02 tấn/km * 3 km = 3,06 tấn
Vì vậy, số hàng được phân chia cho mỗi đội là 3,06 tấn