Cho tam giác ABC có BC=a và đường cao AH=h.Từ một điểm trên AH vẽ đường thẳng song song với BC cắt AB và AC tại P vaQ.Về QR vuông góc với BC ?
a tính diện tích PQRS theo a,h,x (AM=x) ?
b xác định vị trí M trên AH để diện tích này lớn nhất ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác vuông ABC có AB2+AC2=BC2(định lý Py-ta-go)
hay:122+92=BC2
=> BC2=144+81=225
=> BC=15
xét 2 tam giác AHC và BAC có:
góc AHC=BAC=900
góc C chung
Do đó: tam giác AHC đồng dạng với BAC (g.g)
=>\(\frac{AH}{AB}=\frac{AC}{BC}\)
<=>\(\frac{AH}{12}=\frac{9}{15}\)
=>\(AH=\frac{12.9}{15}=7,2\) (cm)
Ta có: tam giác ABC vuông tại và AM là trung tuyến của BC
=> AM=1/2.BC
=>AM=15/2=7,5 (cm)