Một người đi xe đạp từ A đến B với vặn tốc 15km/h . Lúc về , người đó chỉ đi với vận tốc là 12km/h nên thời gian về nhiều hơn thời gian đi 45 phút . Tính độ dài quang AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(45ph=\dfrac{3}{4}\left(h\right)\)
Gọi thời gian đi là x>0 (giờ) \(\Rightarrow\) thời gian về là \(x+\dfrac{3}{4}\) (giờ)
Quãng đường lúc đi: \(15x\) (km)
Quãng đường lúc về: \(12\left(x+\dfrac{3}{4}\right)\) (km)
Do quãng đường AB là ko đổi nên ta có pt:
\(15x=12\left(x+\dfrac{3}{4}\right)\Leftrightarrow3x=9\Rightarrow x=3\) (giờ)
Độ dài quãng đường AB: \(S=15.3=45\left(km\right)\)
vì vận tốc tỉ lệ nghịch với thời gian nên tỉ số giữa 2 thời gian là
t1/t2=v2/v1=12/15=4/5
người đó đi mất số thời gian là:
15:(5-4)x4=60(phút)=1 giờ
Quãng đường AB dài là:
15x1=15(km)
DS:15km
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là x+34(h)
Quãng đường đi 15x 3/4 (km)
Quãng đường về 12(x+3/4)(km)
Vì quãng đường AB lúc đi và về không đổi ---> phương trình
15x=12(x+34)
---> x=3(tmđk)
--->quãng đường AB dài :15.3=45(km)
Vậy......
Gọi quãng đường là S.
Thời gian người đó đi từ A đến B là : \(t=\frac{S}{15}\)
Thời gian người đó đi từ B đến A là : \(t'=\frac{S}{12}\)
Theo đề ra : \(t'-t=\frac{3}{4}\) => \(S\left(\frac{1}{12}-\frac{1}{15}\right)=\frac{3}{4}\)
=> \(S=45\left(km\right)\)
Goi độ dài AB là x
Theo đề, ta có: x/12-x/15=22/60=11/30
=>x/60=11/30
=>x=22
Gọi thời gian đi là x (h) ( x>o)
Thời gian về là \(x+\frac{3}{4}\)(h)
Quãng đường đi 15x (km)
Quãng đường về \(12\left(x+\frac{3}{4}\right)\)(km)
Vì quãng đường AB lúc đi và về không đổi ---> phương trình
\(15x=12\left(x+\frac{3}{4}\right)\)
---> x=3(tmđk)
--->quãng đường AB dài :\(15.3=45\)(km)
Đ/S:.....
\(45p=\dfrac{3}{4}h\)
Gọi độ dài quãng đường AB là x (km) (x>0)
Thời gian người đó đi từ A đến B là \(\dfrac{x}{18}\) (h)
Thời gian đi từ B về A là \(\dfrac{x}{12}\) (h)
Vì thời gian về nhiều hơn thời gian đi \(\dfrac{3}{4}h\), ta có pt:
\(\dfrac{x}{12}-\dfrac{x}{18}=\dfrac{3}{4}\Leftrightarrow3x-2x=27\Leftrightarrow x=27\)
Vậy độ dài AB là 27 km
Gọi quãng đường $AB$ là $x(km;x>0)$
Thời gian đi từ $A$ đến $B$ là $\dfrac{x}{15}(h)$
Lúc về người đó đi với số thời gian là $\dfrac{x}{12}(h)$
do thời gian về lâu hơn thời gian đi là $45p=\dfrac{3}{4}(h)$
Nên ta có phương trình: $\dfrac{x}{15}+\dfrac{3}{4}=\dfrac{x}{12}$
$⇔\dfrac{3x}{180}=\dfrac{3}{4}$
$⇔x=\dfrac{3}{4}.180:3=45$
Vậy quãng đương $AB$ dài $45$ km
Gọi độ dài quãng đường AB là x (km)
ta có thời gian lúc đi là : \(\frac{x}{15}\text{ giờ}\),thời gian lúc về là : \(\frac{x}{12}\text{ giờ}\), đổi 45 phút = 3/4 giờ
ta có : \(\frac{x}{12}-\frac{x}{15}=\frac{3}{4}\Leftrightarrow\frac{3x}{20}=\frac{3}{4}\Leftrightarrow x=5km\)
Độ dài quãng đường AB là 45 km.
Lời giải:
Gọi độ dài quãng đường AB là xx (km) (x>0)(x>0).
⇒⇒ Thời gian đi là x15x15 (h)
Thời gian về là x12x12 (h)
Vì thời gian về nhiều hơn thời gian đi là 45 phút = 3434 (h) nên ta có phương trình:
x12−x15=34x12−x15=34
⇒x(112−115)=34⇒x(112−115)=34
⇒x60=34⇒x60=34
⇒x=34.60=45⇒x=34.60=45 (km)
Vậy độ dài quãng đường AB là 45 km.