K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\\ \Rightarrow\left(\dfrac{x}{y}\right)^3=\dfrac{x}{y}.\dfrac{y}{z}.\dfrac{z}{x}=1\\ \Rightarrow\dfrac{x}{y}=1\\ \Rightarrow x=y\\ \Rightarrow y^{2017}-y^{2018}=0\\ \Rightarrow y^{2017}\left(1-y\right)=0\\ \Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

29 tháng 12 2017

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\Rightarrow\left(\dfrac{x}{y}\right)^3=1\Leftrightarrow\dfrac{x}{y}=1\Rightarrow x=y\)

\(x^{2017}-y^{2018}=1\Rightarrow y^{2017}\left(1-y\right)=1\)

\(\Rightarrow\left\{{}\begin{matrix}y^{2017}=1\\1-y=1\end{matrix}\right.\Rightarrow y=\left\{{}\begin{matrix}1\\0\end{matrix}\right.\)

Mà x = y

\(\Rightarrow x=\left\{{}\begin{matrix}1\\0\end{matrix}\right.\)

19 tháng 1 2022

Đặt \(\dfrac{x-y}{z}=m,\dfrac{y-z}{x}=n,\dfrac{z-x}{y}=p\), ta có:

\(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{n+p}{m}+\dfrac{p+m}{n}+\dfrac{m+n}{p}\)

Tính \(\dfrac{n+p}{m}\) theo x, y, z ta được:

\(\dfrac{n+p}{m}=\dfrac{z}{x-y}.\dfrac{y^2-yz+xz-x^2}{xy}=\dfrac{z}{xy}\left(-x-y+x\right)\)

           \(=\dfrac{z}{xy}\left(-x-y-z+2z\right)=\dfrac{2x^2}{xy}\) vì \(\left(x+y+z\right)=0\)

Tương tự:    \(\dfrac{m+p}{n}=\dfrac{2x^2}{yz}.\dfrac{m+n}{p}=\dfrac{2y^2}{xz}\)

Vậy \(\left(m+n+p\right)\left(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}\right)=3+\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}=3+\dfrac{2.3xyz}{xyz}=3+6=9\)

 

23 tháng 10 2021

Đặt \(P=\left(\dfrac{x-y}{z}+\dfrac{y-z}{x}+\dfrac{z-x}{y}\right)\left(\dfrac{z}{x-y}+\dfrac{x}{y-z}+\dfrac{y}{z-x}\right)=9\)

Đặt \(\left\{{}\begin{matrix}\dfrac{x-y}{z}=a\\\dfrac{y-z}{x}=b\\\dfrac{x-z}{y}=c\end{matrix}\right.\)

\(\Leftrightarrow P=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ =1+\dfrac{a}{b}+\dfrac{a}{c}+\dfrac{b}{a}+1+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{c}{b}+1\\ =3+\dfrac{a+c}{b}+\dfrac{a+b}{c}+\dfrac{b+c}{a}\)

Ta có \(\dfrac{a+c}{b}=\dfrac{\dfrac{x-y}{z}+\dfrac{z-x}{y}}{\dfrac{y-z}{x}}=\dfrac{xy-y^2+z^2-xz}{yz}\cdot\dfrac{x}{y-z}\)

\(=\dfrac{\left(z-y\right)\left(y+z-x\right)x}{yz\left(y-z\right)}=\dfrac{x\left(x-y-z\right)}{yz}\)

Mà \(x+y+z=0\Leftrightarrow x=-y-z\)

\(\Leftrightarrow\dfrac{a+c}{b}=\dfrac{x\left(x+x\right)}{yz}=\dfrac{2x^2}{yz}\)

Cmtt ta được \(\dfrac{a+b}{c}=\dfrac{2y^2}{xz};\dfrac{b+c}{a}=\dfrac{2z^2}{xy}\)

Cộng vế theo vế

\(\Leftrightarrow P=\dfrac{2x^2}{yz}+\dfrac{2y^2}{xz}+\dfrac{2z^2}{xy}+3=\dfrac{2x^3+2y^3+2z^3}{xyz}+3\\ \Leftrightarrow P=\dfrac{2\left(x^3+y^3+z^3\right)}{xyz}+3\)

Lại có \(x+y+z=0\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\\ \Leftrightarrow x^3+y^3+z^3=3xyz\)

Thế vào \(P\)

\(\Leftrightarrow P=\dfrac{2\cdot3xyz}{xyz}+3=6+3=9\)

2 tháng 3 2023

`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`

`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`

Ad bđt cosi-swart:

`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`

Mà `xy+yz+zx<=x^2+y^2+z^2)`

`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`

Dấu "=" xảy ra khi `x=y=z=1`

`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`

`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`

`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`

Áp dụng BĐT cosi-swart ta có:

`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`

Mà`xy+yz+zx<=x^2+y^2+z^2`

`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`

Dấu "=" xảy ra khi `x=y=z=1.`

25 tháng 4 2023

Áp dụng BĐT Svácxơ, ta có:

\(A=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)

\(MinA=1\Leftrightarrow x=y=z=\dfrac{2}{3}\)

 

24 tháng 4 2023

\(P=\Sigma\dfrac{x}{x+yz}=\Sigma\dfrac{x}{x(x+y+z)+yz}=\Sigma\dfrac{x}{x^2+xy+xz+yz} \\=\Sigma\dfrac{x}{(x+y)(x+z)}=\dfrac{2(xy+yz+zx)}{(x+y)(y+z)(z+x)}\)

Bất đẳng thức phụ: \(\Pi(x+y)\ge\dfrac{8}{9}(\Sigma x)(\Sigma xy)\)

\(\Leftrightarrow \Sigma(x^2y+x^2z-2xyz)\ge0\) ( đúng do AM-GM )

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z\)

Áp dụng vào bài toán chính: 

\(P\le\dfrac{2(xy+yz+zx)}{\dfrac{8}{9}(\Sigma x)(\Sigma xy)}=\dfrac{9}{4}\)

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{1}{3}\)

Vậy \(\max P =\dfrac{9}{4} \) khi \(x=y=z=\dfrac{1}{3}\)

15 tháng 1 2021

Ta có \(\dfrac{\left(x^2-yz\right)^2}{a^2}=\dfrac{\left(y^2-zx\right)\left(z^2-xy\right)}{bc}\) mà a2 = bc nên:

\(\left(x^2-yz\right)^2=\left(y^2-zx\right)\left(z^2-xy\right)\).

\(\Leftrightarrow x^4+y^2z^2-2x^2yz=y^2z^2+x^2yz-xy^3-xz^3\)

\(\Leftrightarrow x^4+xy^3+xz^3-3x^2yz=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3+y^3+z^3=3xyz\end{matrix}\right.\).

Rõ ràng nếu \(x^3+y^3+z^3=3xyz\) thì \(x=y=z\) (tính chất quen thuộc). Do đó \(\dfrac{x^2-yz}{a}=0\) (vô lí).

Do đó x = 0.

Kết hợp với x + y + z = 2010 thì y + z = 2010.

Rõ ràng với mọi x, y, z thỏa mãn y + z = 2010 và x = 0 thì ta thấy thỏa mãn đk bài toán.

Vậy...

 

27 tháng 10 2021

\(A^2=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}+2\left(\dfrac{xy}{\sqrt{yz}}+\dfrac{yz}{\sqrt{xz}}+\dfrac{xz}{\sqrt{xy}}\right)\)

Áp dụng BĐT cosi:

\(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{\dfrac{x^4y^2z}{y^2z}}=4x\)

\(\dfrac{y^2}{z}+\dfrac{yz}{\sqrt{xz}}+\dfrac{yz}{\sqrt{xz}}+x\ge4\sqrt[4]{\dfrac{y^4z^2x}{z^2x}}=4y\)

\(\dfrac{z^2}{x}+\dfrac{xz}{\sqrt{xy}}+\dfrac{xz}{\sqrt{xy}}+y\ge4\sqrt[4]{\dfrac{z^4x^2y}{x^2z}}=4z\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow A^2+\left(x+y+z\right)\ge4\left(x+y+z\right)\\ \Leftrightarrow A^2\ge3\left(x+y+z\right)\ge3\cdot12=36\\ \Leftrightarrow A\ge6\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{12}{3}=4\)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/3 = y/4 = x/3 + y/4 = 28/7 = 4

=> x = 4 × 3 = 12

=> y = 4 × 4 = 16

Vậy x = 12, y = 16

B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:

X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1

=> x = -1 × 2 = -2

=> y = -1 × -5 = 5

Vậy x = -2, y = 5

C) làm tương tự như bài a, b

9 tháng 12 2021

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2

Do đó: x=16; y=24; z=30