Tính A=1/4.9+1/9.14+1/14.19+...+1/64.69
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = \(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{64.69}\)
5A = \(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{64.69}\)
5A = \(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{64}-\frac{1}{69}\)
5A = \(\frac{1}{4}-\frac{1}{69}\)
5A = \(\frac{65}{276}\)
A = \(\frac{65}{276}:5\)
A = \(\frac{13}{276}\)
1/4*9+1/9*14+1/14*19+...+1/1999*2004
= 1/5 (1/4 - 1/9 + 1/9 - 1/14 + ... + 1/1999 - 1/2004)
= 1/5 (1/4 - 1/2004)
= 1/5 (501/2004 - 1/2004)
= 1/5 . 125/501
= 25/501
\(\frac{1}{4\times9}+\frac{1}{9\times14}+\frac{1}{14\times19}+...+\frac{1}{1999\times2004}\)
\(=\frac{1}{5}\times\left(\frac{5}{4\times9}+\frac{5}{9\times14}+\frac{5}{14\times19}+...+\frac{5}{1999\times2004}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{1999}-\frac{1}{2004}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{4}-\frac{1}{2004}\right)\)
\(=\frac{1}{5}\times\frac{500}{2004}=\frac{25}{501}\)
\(A=\dfrac{1}{5}\left(\dfrac{5}{4\cdot9}+\dfrac{5}{9\cdot14}+...+\dfrac{5}{64\cdot69}\right)\)
\(=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{14}+...+\dfrac{1}{64}-\dfrac{1}{69}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{65}{276}=\dfrac{13}{276}\)