Cho đa thức P(x) = x^5 +ax^3 +bx^2 +cx +1 biết rằng P(x) chia hết cho x^2 +x+1 và P(căn 3) = căn 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(A\left(x\right)⋮5\) \(\forall x.\)
=> \(A\left(0\right)=d⋮5\)
\(A\left(1\right)=a+b+c+d⋮5\)
\(A\left(-1\right)=-a+b-c+d⋮5\)
\(A\left(2\right)=8a+4b+2c+d⋮5\)
\(A\left(-2\right)=-8a+4b-2c+d\)
=> \(a+b+c⋮5\) và \(-a+b-c⋮5.\)
=> \(a+b+c+\left(-a+b-c\right)⋮5\)
=> \(2b⋮5.\)
Mà 2 là số nguyên tố và b nguyên
=> \(b⋮5\left(đpcm\right)\)
=> \(a+c⋮5;-a-c⋮5;8a+2c⋮5;-8a-2c⋮5\)
=> \(2.\left(a+c\right)⋮5\)
=> \(2a+2c⋮5\)
=> \(2a+2c+\left(-8a-2c\right)⋮5\)
=> \(-6ac⋮5.\)
Mà 6 không chia hết cho 5
=> \(a⋮5.\)
=> \(c⋮5.\).
Chúc bạn học tốt!
Câu thay từng giá trị của P(0) ; đến P(1) ; ...rồi trừ đi khi nào ra 2a chia hết cho 5 thì thôi
F(0)=d⇒d⋮5F(0)=d⇒d⋮5
F(1)=a+b+c+d⋮5⇒a+b+c⋮5F(1)=a+b+c+d⋮5⇒a+b+c⋮5
F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5F(−1)=−a+b−c+d⋮5⇒−a+b−c⋮5
⇒(a+b+c)+(−a+b−c)⋮5⇒(a+b+c)+(−a+b−c)⋮5
⇒2b⋮5⇒b⋮5⇒2b⋮5⇒b⋮5
⇒a+c⋮5
P ( x ) = ax^3 + bx^2 + cx + d
Ta có : P( 0 ) chia hết cho 5
P ( 0 ) = a . 0 + b . 0 + c. 0 + d = d chia hết cho 5
P ( 1 ) chia hết cho 5
P ( 1 ) = a . 1^3 + b . 1^2 + c . 1 + d = a + b + c + d chia hết cho 5 ( 1 )
mà d chia hết cho 5 => a + b + c chia hết cho 5
P ( - 1 ) = a . ( -1)^3 + b . ( -1)^2 + c . - 1 + d
= -a + b - c + d ( 2 )
Từ ( 1 ) và ( 2 ) :
P ( 1 ) + P ( -1 ) = a + b + c + d + -a + b - c + d
= 2b + 2d chia hết cho 5
mà 2d chia hết cho 5 => 2b chia hết cho 5 => b chia hết cho 5 => a + c chia hết cho 5 => 2(a + c ) chia hết cho 5
P ( 2 ) = a . 2^3 + b . 2^2 + c. 2 + d
= 8a + 2b + 2c + d
= 2a + 6a + 2b + 2c + d
= 2 ( a + c ) + 6a + 2b + d chia hết cho 5
Mà 2 ( a + c ) chia hết cho 5 , 2b chia hết cho 5 , d chia hết cho 5
=> 6a chia hết cho 5
=> a chia hết cho 5
Mà a + c chia hết cho 5 => c chia hết cho 5
Vậy a, b , c , d chia hết cho 5
mình nha !!!
Học giỏi !!!