Tìm ước chung của các số sau
a. 2n+3 và 3n+2
b. 14n+3 và 21n+4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 21n+4 và 14n+3 ta có:
21n+4 chia hết cho d [ 42n+8 chia hết cho d
14n+3 chia hết cho d [ 42n+9 chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d=> d=1
Vậy ƯCLN của 21n+4 và 14n+3 là 1
t i c k nhé!! 5645657
Gọi d là ƯCLN của 21n+4 và 14n+3 ta có:
21n+4 chia hết cho d [ 42n+8 chia hết cho d
14n+3 chia hết cho d [ 42n+9 chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d=> d=1
Vậy ƯCLN của 21n+4 và 14n+3 là 1
Gọi d=(21n+4,14n+3)
=> 21n+4 chia hết cho d
14n+3 chia hết cho d
=> 42n+8 chia hết cho d
42n+9 chia hết cho d
=> 42n+9-(42n+8) chia hết cho d
<=> 1 chia hết cho d
=> d=1
Vậy (21n+4,14n+3)=1
Gọi ƯCLN(21n+4;14n+3)=d
suy ra 21n+4 chia hết cho d 14n+3 chia hết cho d
42n+8 chia hết cho d (1) 42n+9 chia hết cho d (2)
Từ 1 và 2 suy ra:
(42n+9)-(42n+8) chia hết cho d
42n+9-42n-8 chia hết cho d
1 chia hết cho d
suy ra d=1
vậy ƯCLN(21n+4;14n+3)=1
làm mẫu một bài nha :))
gợi UCLN(3n+4,n+1) =d. ta có:
\(\hept{\begin{cases}3n+4⋮d\\n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+4⋮d\\3n+3⋮d\end{cases}}}\Rightarrow\left[\left(3n+4\right)-\left(3n+3\right)\right]⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
vì (3n+4,n+1) =1 => \(\frac{3n+4}{n+1}\)là phân số tối giản
chữa đề : chứng minh rằng các cặp số sau là số nguyên tố cùng nhau
đề : Chứng minh rằng các cặp số sau là SNT cùng nhau
a) Gọi UC(2n+3;3n+2) là d ( d là số tự nhiên )
Ta có :
2n+3 chia hết cho d ; 3n+2 chia hết cho d
=> 3.(2n+3) chia hết cho d ; 2.(3n+2) chia hết cho d
=> 6n+9 ; 6n+4 chia hết cho d
=> 6n+9-(6n+4) chia het cho d
=> 5 chia hết cho d
=> d=1;5
b) làm tương tự nhé bạn