K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2018

Áp dụng bất đẳng thức \(AM-GM\) cho 2 số dương ta có:

\(VT=\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\ge\dfrac{3abc}{2abc}+\dfrac{2ab}{c^2+ab}+\dfrac{2bc}{a^2+bc}+\dfrac{2ac}{b^2+ac}=\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\)

Áp dụng bất đẳng thức \(Cauchy-Schwarz\) \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}=\dfrac{a^2b^2}{c^2ab+a^2b^2}+\dfrac{b^2c^2}{a^2bc+b^2c^2}+\dfrac{a^2c^2}{b^2ac+a^2c^2}\ge\dfrac{\left(ab+bc+ac\right)^2}{c^2ab+a^2b^2+a^2bc+b^2c^2+b^2ac+a^2c^2}\)

Đặt: \(\left\{{}\begin{matrix}ab=x\\bc=y\\ac=z\end{matrix}\right.\) ta được: \(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+xy+xz+xy}\ge\dfrac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Nên: \(\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\ge\dfrac{3}{2}+2.\dfrac{3}{2}=\dfrac{9}{2}\)

Mà: \(VT\ge\dfrac{3}{2}+2\left(\dfrac{ab}{c^2+ab}+\dfrac{bc}{a^2+bc}+\dfrac{ac}{b^2+ac}\right)\Leftrightarrow VT\ge\dfrac{3}{2}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2018

Lời giải:

Áp dụng BĐT AM-GM ta có: \(\frac{a^3+b^3+c^3}{2abc}\geq \frac{3\sqrt[3]{a^3b^3c^3}}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\) (1)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{a^2+b^2+c^2+ab+bc+ac}\) (2)

Có:

\((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2=2(a^2+b^2+c^2)+2\sqrt{(a^2+b^2)(b^2+c^2)}+2\sqrt{(b^2+c^2)(c^2+a^2)}+\sqrt{(a^2+b^2)(c^2+a^2)}\)

Áp dụng BĐT Bunhiacopxky:

\(\sqrt{(a^2+b^2)(b^2+c^2)}\geq \sqrt{(ac+b^2)^2}=ac+b^2\)

\(\sqrt{(b^2+c^2)(c^2+a^2)}\geq \sqrt{(ba+c^2)^2}=ba+c^2\)

\(\sqrt{(a^2+b^2)(c^2+a^2)}\geq \sqrt{(a^2+bc)^2}=a^2+bc\)

\(\Rightarrow (\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 2(a^2+b^2+c^2)+2(a^2+b^2+c^2+ab+bc+ac)\)

\(\geq a^2+b^2+c^2+ab+bc+ac+2(a^2+b^2+c^2+ab+bc+ac)\) (AM-GM)

Hay \((\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2\geq 3(a^2+b^2+c^2+ab+bc+ac)\) (3)

Từ \((2); (3)\Rightarrow \frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{a^2+c^2}{b^2+ac}\geq 3\) (4)

Từ \((1); (4)\Rightarrow \frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\geq \frac{9}{2}\)

Ta có đpcm.

Dấu bằng xảy ra khi $a=b=c$

NV
1 tháng 5 2021

a.

Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
1 tháng 5 2021

b.

Ta có:

\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)

Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

Cộng vế với vế:

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)

Dấu "=" xảy ra khi \(a=b=c\)

15 tháng 8 2017

Áp dụng BĐT AM - GM, ta có:

\(\dfrac{a^3+b^3+c^3}{2abc}+\dfrac{a^2+b^2}{c^2+ab}+\dfrac{b^2+c^2}{a^2+bc}+\dfrac{a^2+c^2}{b^2+ac}\)

\(\ge\dfrac{3\sqrt{a^3b^3c^3}}{2abc}+\dfrac{a^2+b^2}{c^2+\dfrac{a^2+b^2}{2}}+\dfrac{b^2+c^2}{a^2+\dfrac{b^2+c^2}{2}}+\dfrac{a^2+c^2}{b^2+\dfrac{a^2+c^2}{2}}\)

\(\ge\dfrac{3abc}{2abc}+\dfrac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}+\dfrac{2\left(b^2+c^2\right)}{2a^2+b^2+c^2}+\dfrac{2\left(a^2+c^2\right)}{2b^2+a^2+c^2}\)

\(=\dfrac{3}{2}+2\times\left[\dfrac{a^2+b^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\dfrac{b^2+c^2}{\left(a^2+b^2\right)+\left(a^2+c^2\right)}+\dfrac{c^2+a^2}{\left(b^2+c^2\right)+\left(b^2+a^2\right)}\right]\) (1)

Đặt \(\left\{{}\begin{matrix}a^2+b^2=x\\b^2+c^2=y\\c^2+a^2=z\end{matrix}\right.\), ta có:

\(\left(1\right)\Leftrightarrow\dfrac{3}{2}+2\times\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)\)

\(\ge\dfrac{3}{2}+2\times\dfrac{3}{2}\) (Bất_đẳng_thức_Nesbitt)

\(=\dfrac{9}{2}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi a = b = c

12 tháng 4 2017

AM-GM ngược dấu như sau:

\(\dfrac{a^3}{a^2+ab+b^2}=a-\dfrac{ab\left(a+b\right)}{a^2+ab+b^2}\ge a-\dfrac{ab\left(a+b\right)}{3ab}=\dfrac{2a-b}{3}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b^3}{b^2+bc+c^2}\ge\dfrac{2b-c}{3};\dfrac{c^3}{c^2+ac+a^2}\ge\dfrac{2c-a}{3}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{2a-b}{3}+\dfrac{2b-c}{3}+\dfrac{2c-a}{3}=\dfrac{a+b+c}{3}=VP\)

12 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^3+b^3+c^3+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\)

Dễ thấy :

\(a^{3}+b^{3}+c^{3}+ab(b+c)+bc(b+c)+ca(c+a)=(a^{2}+ b^{2}+c^{2})(a+b+c)\)

\(\Rightarrow VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

Vậy cần chứng minh

\(\dfrac{a^2+b^2+c^2}{a+b+c}\ge\dfrac{a+b+c}{3}\Leftrightarrow\left(a+b+c\right)^2\ge3\left(a^2+b^2+c^2\right)\) (luôn đúng)

14 tháng 7 2017

a/ \(\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)

\(=\dfrac{a^4}{a^3+a^2b+ab^2}+\dfrac{b^4}{b^3+b^2c+bc^2}+\dfrac{c^4}{c^3+ac^2+ca^2}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a\left(a^2+ab+b^2\right)+b\left(b^2+bc+c^2\right)+c\left(c^2+ca+a^2\right)}\)

\(=\dfrac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2}{a+b+c}\)

14 tháng 7 2017

b/ \(\dfrac{a^3}{bc}+\dfrac{b^3}{ac}+\dfrac{c^3}{ab}=\dfrac{a^4}{abc}+\dfrac{b^4}{abc}+\dfrac{c^4}{abc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3abc}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}\)

\(\ge\dfrac{3\left(a^2+b^2+c^2\right)^2}{\left(a^2+b^2+c^2\right)\left(a+b+c\right)}=\dfrac{3\left(a^2+b^2+c^2\right)^2}{a+b+c}\)

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?