So sánh E và F, biết:
E = \(\dfrac{7^{58}+2}{7^{57}+2}\)
F = \(\dfrac{7^{57}+2009}{7^{56}+2009}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy \(7^{58}>7^{57}\Rightarrow7^{58}+2>7^{57}+2\Rightarrow E=\dfrac{7^{58}+2}{7^{57}+2}>1\)
\(7^{57}< 7^{58}\Rightarrow7^{57}+200< 7^{58}+200\Rightarrow F=\dfrac{7^{57}+200}{7^{58}+200}< 1\)
Vậy E > F
\(\text{Đặt : }A=\frac{2009^{2008}+1}{2009^{2009}+1}\Rightarrow2009A=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(B=\frac{2009^{2007}+1}{2009^{2008}+1}\Rightarrow2009B=\frac{2009^{2008}+2009}{2009^{2008}+1}=1+\frac{2008}{2009^{2008}+1}\)
Ta thấy: \(\frac{2008}{2009^{2009}+1}<\frac{2008}{2009^{2008}+1}\)
=>2009A<2009B =>A<B
Hay \(\frac{2009^{2008}+1}{2009^{2009}+1}<\frac{2009^{2007}+1}{2009^{2008}+1}\)
\(E=\dfrac{7^{58}+7-5}{7^{57}+2}=7-\dfrac{5}{7^{57}+2}\)
\(F=\dfrac{7^{57}+2009\cdot7-2009\cdot6}{7^{56}+2009}=7-\dfrac{12054}{7^{56}+2009}\)
mà \(\dfrac{5}{7^{57}+2}>\dfrac{12054}{7^{56}+2009}\)
nên E<F