1.Tính tích các đơn thức sau:
a) 3xy3 và x4y2
b) \(\dfrac{12}{15}\)x4y2 và -5xy3
c) -\(\dfrac{1}{7}\)x2y và -\(\dfrac{2}{5}\)xy4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9: \(\left(-2x\right)\left(3x^2-2x+4\right)=-6x^3+4x^2-8x\)
Hướng dẫn giải:
a) Tích của hai đơn thức 12151215 x4y2 và 5959 xy là 12151215 x4y2 . 5959 xy = 4949 x5 y3;
Đơn thức tích có bậc 8.
b) - 1717 x2y . (-2525 xy4) = 235235 x3y5;
Đơn thức tích có bậc 8.
a) Tích của hai đơn thức \(\dfrac{12}{15}\)x4y2 và \(\dfrac{5}{9}\) xy là \(\dfrac{12}{15}\) x4y2 . \(\dfrac{5}{9}\) xy = \(\dfrac{4}{9}\) x5 y3;
Đơn thức tích có bậc 8.
b) - \(\dfrac{1}{7}\) x2y . (-\(\dfrac{2}{5}\) xy4) = \(\dfrac{2}{35}\) x3y5;
Đơn thức tích có bậc 8.
\(=\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{7}{18}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
a) \(2x^2y+\dfrac{2}{3}x^2y+\left(-\dfrac{1}{3}\right)x^2y\)
\(=\left(2+\dfrac{2}{3}+-\dfrac{1}{3}\right)x^2y\)
\(=\dfrac{7}{3}x^2y\)
b) \(2x^2y^2+3x^2y^2+x^2y^2\)
\(=\left(2+3+1\right)x^2y^2\)
\(=6x^2y^2\)
a: \(2xy^2\cdot\left(-\dfrac{5}{2}x^2y\right)=-5x^3y^3\)
Hệ số là -5
Phần biến là \(x^3;y^3\)
b: \(\dfrac{2}{3}ax^2y^3\cdot xy^3=\dfrac{2}{3}ax^3y^6\)
Hệ số là \(\dfrac{2}{3}a\)
Phần biến là \(x^3;y^6\)
a)
Ta có: \(BCNN\left( {10,15} \right) = 30\) nên
\(\begin{array}{l}\dfrac{7}{{10}} = \dfrac{{7.3}}{{10.3}} = \dfrac{{21}}{{30}}\\\dfrac{{11}}{{15}} = \dfrac{{11.2}}{{15.2}} = \dfrac{{22}}{{30}}\end{array}\)
Vì \(21 < 22\) nên \(\dfrac{{21}}{{30}} < \dfrac{{22}}{{30}}\) do đó \(\dfrac{7}{{10}} < \dfrac{{11}}{{15}}\).
b)
Ta có: \(BCNN\left( {8,24} \right) = 24\) nên
\(\dfrac{{ - 1}}{8} = \dfrac{{ - 1.3}}{{8.3}} = \dfrac{{ - 3}}{{24}}\)
Vì \( - 3 > - 5\) nên \(\dfrac{{ - 3}}{{24}} > \dfrac{{ - 5}}{{24}}\) do đó \(\dfrac{{ - 1}}{8} > \dfrac{{ - 5}}{{24}}\).
a: \(\dfrac{15}{21}=\dfrac{5}{7}=\dfrac{30}{42}\)
=>Lập được TLT
b: \(\dfrac{0.25}{1.25}=\dfrac{1}{5}< >\dfrac{1}{7}\)
=>KO lập được TLT
c: \(0.4:\left(1+\dfrac{2}{5}\right)=0.4:1.4=\dfrac{2}{7}< >\dfrac{3}{5}\)
=>Ko lập được TLT
d: \(\dfrac{3}{5}:\dfrac{1}{7}=\dfrac{21}{5}=< >21:\dfrac{1}{5}\)
=>Ko lập được TLT
e: \(4+\dfrac{1}{2}:7+\dfrac{1}{2}=4.5:7.5=\dfrac{3}{5}< >\dfrac{2.7}{4.7}\)
=>Ko lập được TLT
f: 1/4:1/9=9/4
1/2:2/9=9/4
=>1/4:1/9=1/2:2/9
=>Lập được TLT
g: 2/7:4/11=2/7*11/4=22/28=11/14
7/2:4/11=7/2*11/4=77/8<>11/14
=>Ko lập được TLT
h: 2/5:10/2=2/5*2/10=4/50=2/25
2/1:1/4=8<>2/25
=>Ko lập được TLT
i: 2/7:7/4=2/7*4/7=8/49
16/49:2=8/49=2/7:7/4
=>Lập được TLT
\(A=\left(3x^4y^2-\dfrac{1}{2}x^4y^2\right)+\left(\dfrac{1}{2}xy^5+5xy^5\right)+\left(\dfrac{-3}{4}x^2y^3-\dfrac{1}{4}x^2y^3\right)=\dfrac{11}{4}x^4y^2+\dfrac{26}{5}xy^5-x^2y^3\)
Bậc là 6
a: \(3xy^3\cdot x^4y^2=3x^5y^2\)
b: \(\dfrac{4}{5}x^4y^2\cdot\left(-5\right)xy^3=-4x^5y^5\)
c: \(\dfrac{1}{7}x^2y\cdot\dfrac{2}{5}xy^4=\dfrac{2}{35}x^3y^5\)
a. 3xy3 . 2x4y
= 6x5y4
b. \(\dfrac{12}{15}x^4y^2.\left(-5\right)xy^3\)
= -4x5y5
c. \(\dfrac{-1}{7}x^2y.\dfrac{-2}{5}xy^4\)
= \(\dfrac{2}{35}x^3y^5\)