Cho hình thang ABCD (AB//CD) biết AB=3cm , CD=7cm Gọi M,N lần lượt là trung điểm AD,BC
a)Tính độ dài MN
b)Đường thẳng AC cắt MN tại E . Tính độ dài các đoạn thẳng ME,EN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình bên dưới nha.
Giải thích các bước giải:
M;N lần lượt là trung điểm của AD,BCM;N lần lượt là trung điểm của AD,BC
⇒MN là đường trung bình của hình thang ABCD⇒MN là đường trung bình của hình thang ABCD
⇒MN=2+52=3,5;MN//AB//CD⇒MN=2+52=3,5;MN//AB//CD
MN//AB⇒ME//AB mà M là trung điểm ABMN//AB⇒ME//AB mà M là trung điểm AB
⇒ME là đường trung bình của ΔABD⇒ME là đường trung bình của ΔABD
⇒ME=AB2=1⇒ME=AB2=1
:Chứng minh tương tự:NF là đường trung bình của ΔACB:Chứng minh tương tự:NF là đường trung bình của ΔACB
⇒NF=AB2=1⇒NF=AB2=1
⇒EF=MN−ME−MF=3,5−1−1=1,5⇒EF=MN−ME−MF=3,5−1−1=1,5
Vậy EF=1,5Vậy EF=1,5
Xét ΔADC có MI//DC
nên \(\dfrac{MI}{DC}=\dfrac{AM}{AD}=\dfrac{1}{2}\)
=>\(\dfrac{MI}{12}=\dfrac{1}{2}\)
=>\(MI=6\left(cm\right)\)
Xét hình thang ABCD có
M là trung điểm của AD
MN//AB//CD
Do đó: N là trung điểm của BC
Xét hình thang ABCD có
M,N lần lượt là trung điểm của AD,BC
=>MN là đường trung bình của hình thang ABCD
=>\(MN=\dfrac{AB+CD}{2}=\dfrac{6+12}{2}=\dfrac{18}{2}=9\left(cm\right)\)
a/
△ACD có:
- MN lần lượt đi qua trung điểm của AD và AC tại M và N
=> MN là đường trung bình của △ACD
Mặt khác, hình thang ABCD có:
- MP lần lượt đi qua trung điểm của AD và BC tại M và P
=> MP là đường trung bình của hình thang ABCD
=> MN trùng MP
Vậy: M, N, P thẳng hàng. (đpcm)
b/
- MN là đường trung bình của △ACD (cmt)
=> \(MN=\dfrac{1}{2}CD\)
Hay: \(MN=\dfrac{1}{2}.7=3,5\left(cm\right)\)
- MP là đường trung bình của hình thang ABCD (cmt)
=> \(MP=\dfrac{1}{2}AB.CD\)
Hay: \(MP=\dfrac{5+7}{2}=6\left(cm\right)\)
- \(NP=MP-MN\)
Hay: \(NP=6-3,5=2,5\left(cm\right)\)
- Nhận xét: Độ dài MP = 1/2 tổng độ dài hai đáy AB và CD
Vậy:
\(MN=3,5\left(cm\right)\)
\(NP=2,5\left(cm\right)\)
\(MP=6\left(cm\right)\)
2:
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
=>BMNC là hình thang
mà góc B=góc C
nên BMNC là hình thang cân
b: Để BM=MN=NC thì MN=MB
=>góc MNB=góc MBN
=>góc ABN=góc CBN
=>BN là phân giác của góc ABC
=>N là chân đường phân giác kẻ từ B xuống AC
NM=NC
=>góc NMC=góc NCM
=>góc ACM=góc BCM
=>CM là phân giác của góc ACB
=>M là chân đường phân giác kẻ từ C xuống AB
3: TH1: AD//BC
Xét tứ giác ABCD có
AD//BC
AD=BC
=>ABCD là hình bình hành
=>góc C+góc D=180 độ
mà góc C=góc D
nên góc C=180/2=90 độ
=>ABCD là hình chữ nhật
=>ABCD là hình thang cân
TH2: AD ko song song với BC
Gọi O là giao của AD và BC
Xét ΔODC có góc C=góc D
nên ΔODC cân tại O
=>OD=OC
=>OA=OB
Xét ΔODC có OA/OD=OB/OC
nên AB//CD
=>ABCD là hình thang
mà góc C=góc D
nên ABCD là hình thang cân
Cho hình bình hành ABCD có AB song song CD biết ab = 3 cm và CD = 7 cm gọi M N là trung điểm của AD và BC độ dài của Mn là