Cho a, b, c > 0 thoả mãn: \(\dfrac{1}{1+a}+\dfrac{35}{35+2b}\le\dfrac{4c}{4c+57}\). Tìm giá trị nhỏ nhất của A=abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4c}{4c+57}\ge\frac{1}{1+a}+\frac{35}{35+2b}\ge2\sqrt{\frac{35}{\left(1+a\right)\left(35+2b\right)}}\)
\(\frac{a}{1+a}\ge\frac{57}{4c+57}+\frac{35}{35+2b}\ge2\sqrt{\frac{35\cdot57}{\left(4c+57\right)\left(35+2b\right)}}\)
\(\frac{2b}{35+2b}\ge\frac{57}{4c+57}+\frac{1}{1+a}\ge2\sqrt{\frac{57}{\left(4c+57\right)\left(1+a\right)}}\)
\(\Rightarrow8abc\ge8\cdot1995\Rightarrow abc\ge1995\)
Vậy giá trị nhỏ nhất của abc là 1995
\(P=\dfrac{4ab}{a+2b}+\dfrac{9ca}{a+4c}+\dfrac{4bc}{b+c}\)
\(P=\dfrac{4abc}{ac+2bc}+\dfrac{9abc}{ab+4bc}+\dfrac{4abc}{ab+ac}\)
\(P=abc\left(\dfrac{4}{ac+2bc}+\dfrac{9}{ab+4bc}+\dfrac{4}{ab+ac}\right)\)
\(P\ge abc.\dfrac{\left(2+3+2\right)^2}{ac+2bc+ab+4bc+ab+ac}\)
\(P\ge abc.\dfrac{49}{2ab+6bc+2ca}\)
\(P\ge abc.\dfrac{49}{7abc}\) (vì \(2ab+6bc+2ca=7abc\))
\(P\ge7\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{ac+2bc}=\dfrac{3}{ab+4bc}=\dfrac{2}{ab+ac}\\2ab+6bc+2ca=7abc\end{matrix}\right.\)
\(\dfrac{2}{ac+2bc}=\dfrac{2}{ab+ac}\) \(\Leftrightarrow2b=a\)
Có \(\dfrac{3}{ab+4bc}=\dfrac{2}{ab+ac}\)
\(\Leftrightarrow\dfrac{3}{2b^2+4bc}=\dfrac{2}{2b^2+2bc}\)
\(\Leftrightarrow3b^2+3bc=2b^2+4bc\)
\(\Leftrightarrow b^2=bc\Leftrightarrow b=c\)
\(\Rightarrow a=2b=2c\)
Lại có \(2ab+6bc+2ca=7abc\) \(\Rightarrow4b^2+6b^2+4b^2=14b^3\)
\(\Leftrightarrow b=1\)
\(\Leftrightarrow\left(a,b,c\right)=\left(2,1,1\right)\)
Vậy \(min_P=7\)
Ta có BĐT: \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=3.3=9\)
\(\Rightarrow a+b+c\ge3\)
Phân tích và áp dụng BĐT AM-GM:
\(\dfrac{1+3a}{1+b^2}=\dfrac{1}{1+b^2}+\dfrac{3a}{1+b^2}=\left(1-\dfrac{b^2}{1+b^2}\right)+\left(3a-\dfrac{3ab^2}{1+b^2}\right)\ge\left(1-\dfrac{b^2}{2b}\right)+\left(3a-\dfrac{3ab^2}{2b}\right)=\left(1-\dfrac{b}{2}\right)+\left(3a-\dfrac{3}{2}ab\right)\)
Tương tự:
\(\dfrac{1+3b}{1+c^2}\ge\left(1-\dfrac{c}{2}\right)+\left(3b-\dfrac{3}{2}bc\right)\)
\(\dfrac{1+3c}{1+a^2}\ge\left(1-\dfrac{a}{2}\right)+\left(3c-\dfrac{3}{2}ca\right)\)
Cộng các vế của các BĐT ta được:
\(P\ge3-\dfrac{1}{2}\left(a+b+c\right)+3\left(a+b+c\right)-\dfrac{3}{2}\left(ab+bc+ca\right)=3+\dfrac{5}{2}\left(a+b+c\right)-\dfrac{3}{2}.3\ge3+\dfrac{5}{2}.3-\dfrac{9}{2}=6\)
\(P=6\Leftrightarrow a=b=c=1\)
Vậy \(P_{min}=6\)
\(2a=3b=4c\\ \Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{2b}{8}=\dfrac{2c}{6}=\dfrac{a+b-c}{7}=\dfrac{a+2b-2c}{8}\\ \Leftrightarrow A=\dfrac{a+b-c}{a+2b-2c}=\dfrac{7}{8}\)
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)