K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Góc với đường tròn

Câu a:

Xét tứ giác ABCN có: \(\widehat{BAC}=\widehat{CNB}=90^0\)

⇒ ABCN nội tiếp

Câu b:

\(M,C,D,N\in\left(O\right)\)

⇒ MCDN nội tiếp

\(\Rightarrow\widehat{DCM}+\widehat{DNM}=180^0\)

\(\widehat{DNM}+\widehat{BNA}=180^0\left(\text{2 góc kề bù}\right)\)

\(\widehat{DCM}=\widehat{BNA}\)

\(\widehat{ACB}=\widehat{BNA}\) (ABCN nội tiếp)

\(\widehat{DCM}=\widehat{ACB}\)

⇒ CA là tia phân giác của \(\widehat{BCD}\)

Câu c:

Vì ABCN nội tiếp nên \(\widehat{ABC}+\widehat{ANC}=180^0\)

\(\widehat{DNC}+\widehat{ANC}=180^0\left(\text{2 góc kề bù}\right)\)

\(\widehat{ABC}=\widehat{DNC}\)

\(\widehat{DEC}=\widehat{DNC}\left(\text{cùng chắn }\stackrel\frown{DC}\text{ của }\left(O\right)\right)\)

\(\widehat{ABC}=\widehat{DEC}\) tại vị trí đồng vị

⇒ AB // DE

⇒ ABED là hình thang

Câu d:

• Theo gt, ta có: M đx K qua E

mà MK ⊥ BC tại E

⇒ BC là đường trung trực của MK

\(\widehat{BKM}=\widehat{BMK}\)\(\widehat{CKM}=\widehat{CMK}\)

• Tương tự, ta cũng có AB là đường trung trực của IM

\(\widehat{BIA}=\widehat{BMA}\)

• Xét tứ giác BICK có:

\(\widehat{BIC}+\widehat{BKC}=\widehat{BMA}+\widehat{BKM}+\widehat{CKM}=\widehat{BMA}+\widehat{BMK}+\widehat{CMK}=180^0\)

⇒ BICK nội tiếp

• Gọi (O') là tâm đường tròn ngoại tiếp tứ giác BICK

⇒ O' thuộc đường trung trực của BC

⇒ O'B nhỏ nhất khi O' là trung điểm của BC

mà O'B = O'C = O'K

⇒ ΔKBC vuông tại K

\(\widehat{BKC}=\widehat{BMC}=90^0\)

\(M\equiv A\)

Suy ra đường tròn ngoại tiếp ΔBIK có bán kính R nhỏ nhất khi M trùng A.

5 tháng 10 2019

a, Học sinh tự chứng minh

b, Học sinh tự chứng minh

c, Học sinh tự chứng minh

d, Chú ý:  B I A ^ = B M A ^ , B M C ^ = B K C ^

=> Tứ giác BICK nội tiếp đường tròn (T), mà (T) cũng là đường tròn ngoại tiếp  DBIK. Trong (T), dây BC không đổi mà đường kính của (T) ≥ BC nên đường kính nhỏ nhất bằng BC

Dấu "=" xảy ra <=>  B I C ^ = 90 0 => I ≡ A => MA

5 tháng 4 2020

a) Vì MC là đường kính (O) mà \(N\in\left(O\right)\)

\(\Rightarrow\widehat{MNC}=90^o\).Lại có \(\widehat{BAC}=90^o\)

=> B,A,N,C cùng thuộc 1 đường tròn

=> Tứ giác BANC nội tiếp

25 tháng 1 2021
giải hộ em với ah
25 tháng 1 2021
giảo cho em con d với ạ

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

13 tháng 5 2021

ai giúp mình với đi huhu

13 tháng 5 2021

Mình vẽ hình trc nha

undefined

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0