Cho tam giác ABC . Các trung tuyến AM, BN,CE CẮT nhau tại G. Qua C vẽ Đường thẳng song song với BN. Gọi e là trung điểm của NF
a/ cm MN song song với CE
b/ cm AE=PC
c/ gọi D là giao điểm của BN và AE .c/m BG=GD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VÌ DE//BC
SUY RA \(\frac{DN}{BM}=\frac{AN}{AM}\)VÀ \(\frac{NE}{MC}=\frac{AN}{AM}\)\(\Rightarrow\frac{DN}{BM}=\frac{NE}{MC}\)mà BM=MC(m là trung diểm) nên DN=NE
b) dễ thấy \(\frac{KN}{KC}=\frac{DN}{BC}\)VÀ\(\frac{SN}{SB}=\frac{NE}{BC}\)mà \(\frac{DN}{BC}=\frac{NE}{BC}\)(NE=DN)
\(\Rightarrow\frac{KN}{KC}=\frac{SN}{SB}\)áp dụng định lí talet ta suy ra KS//BC
a) Tứ giác ADBC có AD//BC(gt)
BD//AC(gt)
Vậy tứ giác ADBC là hình bình hành.
b) Câu B bạn ghi nhầm đề rồi, phải là N đối xứng với D qua A
Vì ADBC là hình bình hành nên AD//BC(1)
AD=BC(2)
Tứ giác ABCN có đường chéo AC và BN giao nhau tại trung điểm E nên tứ giác ABCN là hình bình hành
=> AN//BC (3)
AN=BC(4)
Từ (1) và (3) suy ra ba điểm D, A, N thẳng hàng
Từ (2) và (4) suy ra AD=AN.
Vậy N và D đối xứng nhau qua A