Rút gọn:
A = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
B = \(3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) B = 2100 - 299 + 298 - 297 + ...+ 22 - 2
=> B x 2 = 2101 - 2100 + 299 - 298 + ...23 - 22
=> B x 2 + B = (2101 - 2100 + 299 - 298 + ...23 - 22 ) + (2100 - 299 + 298 - 297 + ...+ 22 - 2)
<=> B x 3 = 2101 - 2 = 2. ( 299 - 1)
=> B = \(\frac{2.\left(2^{99}-1\right)}{3}\)
Phần c) Làm tương tự Lấy C x 3 rồi + với C.
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+....+2^3-2^2\)
\(2A+A=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) tương tự
\(B=\frac{3^{101}+1}{4}\)
A = 2100 - 299 + 298 - 297 + ... + 22 - 2
= ( 2100 + 298 + ... + 22 ) - ( 299 + 297 + ... + 2 )
= ( 2100 + 298 + ... + 22 ) - 2( 299 + 297 + ... + 2 ) + ( 299 + 297 + ... + 2 )
= 299 + 297 + ... + 2
=> 4A = 2103 + 299 + ... + 23
=> 3A = 2103 - 2
=> A = \(\frac{2^{103}-2}{3}\)
a) \(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow A+2A=2^{101}-2\)
\(A\left(1+2\right)=2^{101}-2\)
\(A.3=2^{101}-2\)
\(A=\frac{2^{101}-2}{3}\)
b) \(B=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3\)
\(3B=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2\)
\(\Rightarrow B+3B=3^{101}-3\)
\(B\left(1+3\right)=3^{101}-3\)
\(4B=3^{101}-3\)
\(B=\frac{3^{101}-3}{4}\)
A=2100-299+298-297+.....+22-2
=>2A=2101-2100+299-298+.....+23-22
=>2A+A=2101-2100+299-298+.....+23-22+2100-299+298-297+....+22-2
=>3A=2201-2
=>A=\(\frac{2^{201}-2}{3}\)
B=3100-399+398-397+....+32-3+1
=>3B=3101-3100+399-398+...+33-32+3
=>3B+B=3101-3100+399-398+...+33-32+3+3100-399+398-397+....+32-3+1
=>4B=3101+1
=>B=\(\frac{3^{101}+1}{4}\)
Câu a : Đặt 2A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2
=> 2A - A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2 - ( 2^100 - 2^99 + 2^98 - 2^97 +...+ 2^2 - 2)
=> A = 2^101 - 2^100 + 2^99 - 2^98 +...+ 2^3 - 2^2 - 2^100 + 2^99 - 2^98 + 2^97 -...- 2^2 + 2
=> A= = 2^101 -2(2^100 + 2^98 + 2^96 +...+ 2^2) + 2(2^99 + 2^97 + 2^95 +...+ 2^3) +2
Câu b : Làm tương tự như trên
BẤM ĐÚNG CHO MÌNH NHA
C = 1/3 + 1/3^2 + 1/3^3 + ... =1/3^99
=> C = 1/3^99 = 1/(3^99)
=> C < 1/2 (đpcm)
2A=2^101-2^100+2^98+...+2^3-2^2
3A = 2A + A
3A = 2^101 - 2 ( Cứ tính là ra , âm vs dương triệt tiêu )
A = (2^101-2) :3
B tăng tự
A = 2100 - 299 + 298 - 297 + ...+ 22 - 2
2.A = 2101 - 2100 + 299 - 298 + ...+ 23 - 22
A + 2.A = 2101 - 2 => 3.A = 2101 - 2 => A = (2101 - 1) / 3
B : tương tự