K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2021

\(\left(x^2+4y^2-20\right)^2-16\left(xy-4\right)^2=\left(x^2+4y^2-20\right)^2-\left(4xy-16\right)^2=\left(x^2+4y^2-20-4xy+16\right)\left(x^2+4y^2-20+4xy-16\right)=\left[\left(x-2y\right)^2-4\right]\left[\left(x+2y\right)^2-36\right]=\left(x-2y-2\right)\left(x-2y+2\right)\left(x+2y-6\right)\left(x+2y+6\right)\)

9 tháng 9 2021

cảm ơn nha

AH
Akai Haruma
Giáo viên
4 tháng 2 2023

Câu 1:

$x^2+4y^2+4xy-16=[x^2+(2y)^2+2.x.2y]-16$

$=(x+2y)^2-4^2=(x+2y-4)(x+2y+4)$

Câu 2:

$x^3+x^2+y^3+xy=(x^3+y^3)+(x^2+xy)$

$=(x+y)(x^2-xy+y^2)+x(x+y)=(x+y)(x^2-xy+y^2+x)$

4 tháng 2 2023

Câu 1:

\(x^2+4y^2+4xy-16\)

\(=\left(x+2y\right)^2-16\)

\(=\left(x+2y+4\right)\left(x+2y-4\right)\)

Câu 2:

\(x^3+x^2+y^3+xy\)

\(=\left(x^3+y^3\right)\left(x^2+xy\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+x\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+x\right)\)

23 tháng 10 2021

\(1,=3xy\left(x^2+2xy+y^2\right)=3xy\left(x+y\right)^2\\ 2,=7xy\left(2x-3y+4xy\right)\\ 3,=\left(x-1\right)\left(x^2-4\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\\ 4,=\left(x-y\right)\left(10x+8\right)=2\left(5x+4\right)\left(x-y\right)\\ 5,=\left(b-c\right)\left(8a-6b\right)=2\left(4a-3b\right)\left(b-c\right)\\ 6,=\left(x-1\right)\left(x^2-16\right)=\left(x-4\right)\left(x+4\right)\left(x-1\right)\\ 7,=x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(x+5\right)\\ 8,=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\\ 9,=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\\ 10,=\left(x-1\right)^2-4y^2=\left(x-2y-1\right)\left(x+2y-1\right)\)

4 tháng 8 2023

\(a.x^3-2x^2-2x-4\\ =\left(x^3-2x^2\right)-\left(2x-4\right)\\ =x^2\left(x-2\right)-2\left(x-2\right)\\ =\left(x^2-2\right)\left(x-2\right)\)

\(b.xy+1-x-y\\ =\left(xy-x\right)+\left(-y+1\right)\\ =x\left(y-1\right)-\left(y-1\right)\\ =\left(x-1\right)\left(y-1\right)\)

\(c.x^2-4xy+4y^2-4y\\ =\left(x-2y\right)^2-4y\\ =\left(x-2y\right)^2-\left(2y\right)^2\\ =\left(x-2y+2y\right)\left(x-2y-2y\right)\\ =x\left(x-4y\right)\)

\(d.16-x^2+2xy-y^2\\ =4^2-\left(x-y\right)^2\\ =\left(4-x+y\right)\left(4-x-y\right)\)

 

 

 

b: =xy-x-y+1

=x(y-1)-(y-1)

=(x-1)(y-1)

c: =(x-2y)^2-4y

\(=\left(x-2y-2\sqrt{y}\right)\left(x-2y+2\sqrt{y}\right)\)

d: =16-(x^2-2xy+y^2)

=16-(x-y)^2

=(4-x+y)(4+x-y)

Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:A. (x - 7)(2x + 7)                  B. (x - 7)(2x - 7)                   C. 7(x - 7)                  D. (x - 7)(x + 7)Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:A. (x – 2y + 4)(x + 2y + 4)                                      B. (x – 2y + 4)(x – 2y – 4)C. (x – 2y + 4)(x + 2y + 4)                                      D. Không phân tích đượcCâu 58:Đa thức (x – 4)2 + (x – 4)...
Đọc tiếp

Câu 56:Đa thức x(x – 7) + (7 – x)2 được phân tích thành nhân tử là:

A. (x - 7)(2x + 7)                  B. (x - 7)(2x - 7)                   C. 7(x - 7)                  D. (x - 7)(x + 7)

Câu 57:Phân tích đa thức x2 – 16 – 4xy + 4y2 thành nhân tử ta được:

A. (x – 2y + 4)(x + 2y + 4)                                      B. (x – 2y + 4)(x – 2y – 4)

C. (x – 2y + 4)(x + 2y + 4)                                      D. Không phân tích được

Câu 58:Đa thức (x – 4)2 + (x – 4) được phân tích thành nhân tử là:

A. (x + 4)(x – 4)                   B. (x – 4)(x – 3)                    C. (x + 4)(x + 3)       D. (x – 4)(x – 5)

2
9 tháng 11 2021

56B

57B

58B

9 tháng 11 2021

56.B

57.B

58.B

21 tháng 8 2021

1, \(a^6+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)

2, \(x^2-10x+25=\left(x-5\right)^2\) 

3, \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)

4, \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

21 tháng 8 2021

1) \(a^6+b^3=\left(a^2\right)^3+b^3=\left(a^2+b\right)\left(a^4-a^2b+b^2\right)\)

2) \(x^2-10x+25=\left(x-5\right)^2\)

3) \(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{3}\right)^3=\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2x}{3}+\dfrac{1}{4}\right)\)

4) \(x^2+4xy+4y^2=\left(x+2y\right)^2\)

a: \(=4xy\left(1-5x^2y\right)\)

b: \(=\left(x-y\right)\left(x+y\right)+3\left(x-y\right)=\left(x-y\right)\left(x+y+3\right)\)

c: \(=x\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(x+y\right)\)

d: \(=\left(x+2y\right)^2-36=\left(x+2y+6\right)\left(x+2y-6\right)\)

25 tháng 12 2021

= ( x2 - 4y2 ) - ( 2x + 4y )

= ( x - 2y ) ( x + 2y ) - 2 ( x - 2y )

= ( x - 2y ) ( x + 2y - 2 )

25 tháng 12 2021

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

5 tháng 11 2021

\(-\left(x+2y\right)^2\)

5 tháng 11 2021

\(-\left(x^2+4xy+4y^2\right)\)

\(-\left(x+2y\right)^2\)

Bài 1.        Phân tích các đa thức sau thành nhân tử:a.      12x3y – 24x2y2 + 12xy3        b.      x2  - 2xy – x2  + 4y2c.      x2 – 2x - 4y2  + 1d.      x2 + 3x – 18 e.      x2 – 6 x +xy  - 6yf.       x2 + 2x + 1   - 16        g.      x2 – 2x -3h.      x2 - 8x +15 i.        2x2  + 2xy  - x - y j.       x2 -  4x + 4  -  25y2k.    x2 + 4x -12                         l.        x2 + 6x +8m.   ax – 2x - a2  +2an.      x2  - 6xy + 9y2   -25z2o.    x2 + x – 6  p.      x2  -7 x + 6q.      x3-...
Đọc tiếp

Bài 1.        Phân tích các đa thức sau thành nhân tử:

a.      12x3y – 24x2y2 + 12xy3        

b.      x2  - 2xy – x2  + 4y2

c.      x2 – 2x - 4y2  + 1

d.      x2 + 3x – 18 

e.      x2 – 6 x +xy  - 6y

f.       x2 + 2x + 1   - 16        

g.      x2 – 2x -3

h.      x2 - 8x +15 

i.        2x2  + 2xy  - x - y 

j.       x2 -  4x + 4  -  25y2

k.    x2 + 4x -12                         

l.        x2 + 6x +8

m.   ax – 2x - a2  +2a

n.      x2  - 6xy + 9y2   -25z2

o.    x2 + x – 6  

p.      x2  -7 x + 6

q.      x3- 3x2 + 3x -1   

r.      81 – x2 + 4xy – 4y2   

s.     x2 -5x -6 

t.       3x2 - 7x + 2

u.      3x2 - 3y2 - 12x – 12y  

v.      x2 +6x –y2 +9

w.    x2 - 8 x – 9

x.      x4 + 64

1
26 tháng 10 2021

b: \(=\left(x-y\right)^2-4y^2\)

\(=\left(x-y-2y\right)\left(x-y+2y\right)\)

\(=\left(x-3y\right)\left(x+y\right)\)

c: \(=x\left(x-6\right)+y\left(x-6\right)\)

\(=\left(x-6\right)\left(x+y\right)\)