Rút gọn :
\(M=\frac{a^2+2}{a^3-1}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{GIẢI :}\)
ĐKXĐ : \(a\ne\pm1\).
\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).
\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
\(=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a-1\right)\left(a^2+1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)
\(=\frac{a^2+a+1}{a^2+1}:\left(\frac{a^2+1}{\left(a-1\right)\left(a^2+1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)
\(=\frac{a^2+a+1}{a^2+1}:\frac{a-1}{a^2+1}=\frac{a^2+a+1}{a-1}\)
a) \(a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}\cdot a^{\dfrac{7}{6}}=a^{\dfrac{1}{3}+\dfrac{1}{2}+\dfrac{7}{6}}=a^2\)
b) \(a^{\dfrac{2}{3}}\cdot a^{\dfrac{1}{4}}:a^{\dfrac{1}{6}}=a^{\dfrac{2}{3}+\dfrac{1}{4}-\dfrac{1}{6}}=a^{\dfrac{3}{4}}\)
c) \(\left(\dfrac{3}{2}a^{-\dfrac{3}{2}}\cdot b^{-\dfrac{1}{2}}\right)\left(-\dfrac{1}{3}a^{\dfrac{1}{2}}b^{\dfrac{2}{3}}\right)=\left(\dfrac{3}{2}\cdot-\dfrac{1}{3}\right)\left(a^{-\dfrac{3}{2}}\cdot a^{\dfrac{1}{2}}\right)\left(b^{-\dfrac{1}{2}}\cdot b^{\dfrac{2}{3}}\right)\)
\(=-\dfrac{1}{2}a^{-1}b^{-\dfrac{1}{3}}\)
Trả lời
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)\) \(\left(a\ge0.a\ne1\right)\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{1}{\left(a+1\right)^2}-\frac{1}{\left(a-1\right).\left(a+1\right)}\right]\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.\left[\frac{a-1-a-1}{\left(a+1\right)^2.\left(a-1\right)}\right]\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}.0\)
\(B=\frac{1}{a+1}\)
Vậy \(B=\frac{1}{a+1}\)
\(B=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{1}{a^2+2a+1}-\frac{1}{a^2-1}\right)ĐK\left(a\ge0;a\ne1\right)\)
\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}-\frac{a^2+1}{\left(a^2-1\right)\left(a^2+1\right)}\right)\)
\(=\frac{1}{a+1}+\frac{a-a^3}{a^2+1}\left(\frac{a^2-1-a^2-1}{\left(a^2+1\right)\left(a^2-1\right)}\right)\)
\(=\frac{1}{a+1}\)
Vậy \(B=\frac{1}{a+1}\)
a, ĐK: \(a\ne0,b\ne0,a+b\ne0\)
\(A=\left[\frac{1}{a^2}+\left(\frac{1}{a}+\frac{1}{b}\right):\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)
\(=\left[\frac{1}{a^2}+\frac{a+b}{ab}:\frac{a+b}{2}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)
\(=\left[\frac{1}{a^2}+\frac{2}{ab}+\frac{1}{b^2}\right].\frac{a^2b^2}{a^3+b^3}:\left(a+b\right)\)
\(=\frac{\left(a+b\right)^2}{a^2b^2}.\frac{a^2b^2}{\left(a+b\right)\left(a^2-ab+b^2\right)}.\frac{1}{a+b}\)
\(=\frac{1}{a^2-ab+b^2}\)
b, \(a^2-ab+b^2=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2>0\left(a,b\ne0\right)\)
\(\Rightarrow A=\frac{1}{a^2-ab+b^2}>0\forall a;b\)
\(\text{ĐKXĐ: }x\ne1\)
\(M=\frac{a^2+2}{a^3-1}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}=\frac{a^2+2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{a+1}{a^2+a+1}-\frac{1}{a-1}\)
\(=\frac{a^2+2}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\frac{a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+2+a^2-1-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{a^2-a}{\left(a-1\right)\left(a^2+a+1\right)}=\frac{a.\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a}{a^2+a+1}\)