cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn (o) các đường cao AA',BB' của tam giác ABC cắt nhau tại H và cắt đường tròn lần lượt tại Dvà E.chứng minh rằng:
a)các tứ giác A'HB'C,AB'A'B nội tiếp được đường tròn?
b)CD=CE?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
Tự vé hình nhé.
Gọi M là trung điểm của BC
=> ME là đường trung tuyến ứng với cạnh huyền của tam giác vuông EBC => ME=MB=MC (1)
=> MF ...........................................................................................FBC => MF=MB=MC (2)
(1)(2) => ME=MF=MB=MC
=> 4 điểm E,F,B,C cùng thuộc dường tròn tâm M đường kính BC
b, Đường cao của đường tròn là gì hả bạn??
Tích cho mình nhé
Tý Giải tiếp nếu đè bài đúng
a: góc BDH+góc BFH=180 độ
=>BDHF nội tiếp
góc BFC=góc BEC=90 dộ
=>BFEC nội tiếp
b: góc FEB=góc BAD
góc DEB=góc FCB
mà góc BAD=góc FCB
nên góc FEB=góc DEB
=>EB là phân giác của góc FED
c: Kẻ tiếp tuyến Ax của (O)
=>góc xAC=góc ABC=góc AEF
=>Ax//FE
=>FE vuông góc OA
=>OA vuông góc IK
a)
xét tứ giác AEHF có :
AEH = 900 (BE là đường cao của B trên AC )
AFH = 900 (CF là dường cao của C trên AB )
ta có ; AEH + AFH = 1800 mà 2 góc này ở vị trí đối nhau
==> tứ giác AEHF nội tiếp
xét tứ AEDB có :
AEB = 900 (BE là dường cao của B trên AC )
ADB = 900 (AD là đường cao của A trên BD )
mà 2 góc này cùa nhìn cạnh AB dưới một góc vuông
==> tứ giác AEDB nội tiếp
câu b vì mình ko hiểu đường cao của đường tròn là gì :/
a: Xét tứ giác AEHF có
góc AEH+góc AFH=180 độ
=>AEHF là tứ giác nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC là tứ giác nội tiếp
b: Xét (O) có
ΔABK nội tiếp
AK là đường kính
=>ΔABK vuông tại B
=>BK//CH
Xét (O) có
ΔACK nội tiếp
AK là đường kính
=>ΔACK vuông tại C
=>CK//BH
Xét tứ giác BHCK có
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>I là trung điểm của BC
Bạn nào lướt qua thì giúp mình phần c với nha :v hơi bí phần c
Lời giải:
* Bạn tự vẽ hình nha *
a) Xét tứ giác $A'HB'C$ có tổng hai góc đối nhau:
\(\widehat{HA'C}+\widehat{HB'C}=90^0+90^0=180^0\) nên \(A'HB'C\) là tứ giác nội tiếp.
Xét tứ giác $AB'A'B$ có: \(\widehat{AB'B}=\widehat{AA'B}=90^0\) cùng nhìn cạnh $AB$ nên $AB'A'B$ là tứ giác nội tiếp
b)
Theo phần a ta đã chứng minh được \(AB'A'B\) nội tiếp, do đó \(\widehat{B'AA'}=\widehat{B'BA'}\) (hai góc nội tiếp cùng nhìn cung $A'B'$ )
Mà: \(\widehat{B'AA'}=\widehat{CAD}=\frac{1}{2}\text{cung CD}\)
\(\widehat{B'BA'}=\widehat{EBC}=\frac{1}{2}\text{cung CE}\)
Do đó: \(\frac{1}{2}\text{cung CD}=\frac{1}{2}\text{ cung CE}\Rightarrow CD=CE\)