K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

\(pt\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\Leftrightarrow\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

27 tháng 8 2021

Tùy bạn làm được câu nao thì làm nhưng mà  đừng làm tắt.

NV
27 tháng 8 2021

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

27 tháng 11 2017

Ta có \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{\left(bc\right)^3+\left(ab\right)^3+\left(ac\right)^3}{\left(abc\right)^2}\)

Ta lại có (a+b+c)2=a2+b2+c2

=>a2+b2+c2+2(ab+bc+ac)= a2+b2+c2

=> 2(ab+bc+ac)=0=> ab+bc+ac=0

Ta cần chứng minh bài toán phụ x+y+z=0 thì

x3+y3+z3=3xyz

Ta thấy x+y+z=0=> x+y=-z

=> (x+y)3=-z3 => x3+3xy(x+y)+y3=-z3

=> x3+y3+z3=-3xy(x+y)=-3xy.(-z)=3xyz

Áp dụng vào bài toán ta có 

ab+bc+ac=0 => (ab)3+(bc)3+(ac)3=3(abc)2

=> \(\frac{bc}{a^2}+\frac{ab}{c^2}+\frac{ac}{b^2}=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)

=> đpcm