x(mũ)2015 - 2016x(mũ)2014 + 2016x(mũ)2012 +...- 2016x(mũ)2 + 2016x -1
Mọi người ghi ra giấy nháp rồi giải cho mình vớiiiiii.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có
\(f\left(x\right)=x^{2017}-2016.x^{2016}+2016.x^{2015}-...+2016.x-1\)
Với \(f\left(2015\right)\)thì \(x=2015,x+1=2016\)
\(\Rightarrow f\left(x\right)=x^{2017}-\left(x+1\right).x^{2016}+\left(x+1\right).x^{2015}-...+\left(x+1\right).x-1\)
\(\Rightarrow f\left(x\right)=x^{2017}-x^{2017}-x^{2016}+x^{2016}+x^{2015}-...+x^2+x-1\)
\(\Rightarrow f\left(x\right)=x-1\)
\(\Rightarrow f\left(2015\right)=2015-1=2014\)
Vậy f(2015)=2014
Tính giá trị của đa thức:
P(x) = x^{2017}-2016x^{2016}-2016x^{2015}-...--2016x^2^-2016x+1 tại x=2017
Ta có x=2015 => x+1 =2016.Thay vào biểu thức,ta có:
\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-...+\left(x+1\right)x^2-\left(x+1\right)x+\left(x+1\right)\)
\(=x^{10}-x^{10}+x^9-x^9+...+x^2-x^2-x+x+1\)=1