K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIAB và ΔICD có

IA=IC

góc AIB=góc CID

IB=ID

Do đo: ΔIAB=ΔICD

b: Ta có: ΔIAB=ΔICD

nên \(\widehat{IBA}=\widehat{IDC}\)

mà \(\widehat{IDC}>\widehat{IBC}\)

nên \(\widehat{IBA}>\widehat{IBC}\)

c: AB+BC=CD+BC>BD>2BI

nên \(BI< \dfrac{AB+BC}{2}\)

a: Xét ΔADB vuông tại D và ΔACE vuông tại E có

AB=AC

góc BAD chung

=>ΔADB=ΔACE

b: Xét ΔIBC có góc IBC=góc ICB

nên ΔIBC cân tại I

24 tháng 10 2021

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=2,4(cm)

9 tháng 6 2016

cần giải câu c thôi

1: Xét ΔABE vuông tại E và ΔACD vuông tại D có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACD

2: Ta có: ΔABE=ΔACD

=>\(\widehat{ABE}=\widehat{ACD}\)

Ta có: \(\widehat{ABE}+\widehat{EBC}=\widehat{ABC}\)

\(\widehat{ACD}+\widehat{DCB}=\widehat{ACB}\)

mà \(\widehat{ABE}=\widehat{ACD};\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

3: Xét ΔABC có

BE,CD là các đường cao

BE cắt CD tại I

Do đó: I là trực tâm của ΔABC

=>AI\(\perp\)BC tại H

Ta có: ΔABH vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AB^2-AH^2=BH^2\left(1\right)\)

Ta có: ΔIHB vuông tại H

=>\(HI^2+HB^2=BI^2\)

=>\(HB^2=BI^2-HI^2\left(2\right)\)

Từ (1),(2) suy ra \(AB^2-AH^2=BI^2-HI^2\)

=>\(AB^2+HI^2=BI^2+AH^2\)

11 tháng 3 2016

minh moi hoc lop 5

11 tháng 3 2016

mình làm được 1 phần à.

THeo định lý Pytago có :

BC2 = AB2 + AC2 => BC= 4,752+ 6,252 => BC = \(\sqrt{4,75^2+6,25^2}\) 

=> BC = 43,8125 \(\approx\) 43,81 (cm)

Xét 2 tam giác vuông BDI và BEI có :

BI chung

Góc DBI = Góc EBI (vì BI là tia phân giác của góc B)

=> tam giác BDI = tam giác BEI (ch-gn)

=> BD = BE = 4,75 (cm)