K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

A B C H M

a) Do AM là trung tuyến nên BM = MC

Ta có :  \(HC-HB-2HM\)

\(=HM+MC-HB-HM-HM\)

\(=MC-HB-HM\)

\(=MC-\left(HB+HM\right)\)

\(=MC-MB=0\)

\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)

b) Xét  \(\Delta AHM\)có  \(\tan a=\frac{HM}{AH}\)

Xét  \(\Delta AHC\)có  \(\cot C=\frac{HC}{AH}\)

Xét  \(\Delta AHB\)có  \(\cot B=\frac{HB}{AH}\)

Ta có :  \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)

Mà  \(HC-HB=2HM\)( câu a )

\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)

Vậy ...

17 tháng 7 2017

A B C H M

\(\Delta ABC\) vuông tại A  và AM là đường trung tuyến \(\Rightarrow AM=BM=CM\)

\(\Rightarrow\Delta AMB\) cân tại M \(\Rightarrow\widehat{MAB}=\widehat{B}\)

\(\Delta ABC\) vuông tại A \(\Rightarrow\widehat{C}+\widehat{B}=90^0\left(1\right)\)

\(AH⊥BC\Rightarrow\widehat{B}+\widehat{BAH}=90^0\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\widehat{C}=\widehat{BAH}\). Ta có \(\widehat{BAH}+\widehat{HAM}=\widehat{MAB}\Rightarrow\widehat{HAM}=\widehat{MAB}-\widehat{BAH}\)\(\left(3\right)\)

Thay \(\widehat{B}=\widehat{MAB}\) và \(\widehat{C}=\widehat{BAH}\) vào (3), ta được:

\(\widehat{HAM}=\widehat{B}-\widehat{C}\). Vậy góc tạo bởi trung tuyến AM và đường cao AH \(\left(\widehat{HAM}\right)\) bằng \(\widehat{B}-\widehat{C}\)(đpcm)

7 tháng 3 2016

Tích đi rồi mình trả lời

7 tháng 3 2016

goi goc BAH,MAH,MAC là A1, A2 ,A3 ta co

B+A1 = 90 mà A1=A2=A3

nen BAC=90

lam k met viet met qua

12 tháng 7 2016

Là ta giác cân ms góc bằng 60độ hay sao ý ^^ ~ bn thửu vẽ hình đi!

12 tháng 7 2016

Tam giác cân thì trung tuyến trùng với đường cao.

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABC có AE là tia phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BE}{AB}=\dfrac{CE}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BE}{3}=\dfrac{CE}{4}\)

mà BE+CE=BC=5cm(gt)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BE}{3}=\dfrac{CE}{4}=\dfrac{BE+CE}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BE}{3}=\dfrac{5}{7}\\\dfrac{CE}{4}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BE=\dfrac{15}{7}\left(cm\right)\\CE=\dfrac{20}{7}\left(cm\right)\end{matrix}\right.\)
Vậy: \(BE=\dfrac{15}{7}cm;CE=\dfrac{20}{7}cm\)

13 tháng 1 2018

A B C H M I

trên tia AC , lấy điểm I sao cho MI \(\perp\)AC

Xét \(\Delta HAM\)và \(\Delta MAI\)có :

AM ( cạnh chung )

\(\widehat{HAM}=\widehat{MAI}\)( gt )

Suy ra : \(\Delta HAM\)\(\Delta MAI\)( cạnh huyền - góc nhọn )

\(\Rightarrow\)HM = MI

Xét \(\Delta ABH\)và \(\Delta AMH\)có :

\(\widehat{BAH}=\widehat{MAH}\)( gt )

AH ( cạnh chung )

\(\widehat{AHB}=\widehat{AHM}\)( = 90 độ )

\(\Rightarrow\)\(\Delta ABH\)\(\Delta AMH\)( g.c.g )

\(\Rightarrow\)BH = MH

\(\Rightarrow\)\(BH=MH=MI=\frac{1}{2}BM=\frac{1}{3}CM\)

xét \(\Delta MIC\)vuông tại I có :

\(MI=\frac{1}{3}CM\)nên \(\widehat{C}=30^o\)\(\Rightarrow\widehat{HAC}=60^o\)

Từ đó suy ra : \(\widehat{BAC}=60^o:2.3=90^o\)

\(\Rightarrow\widehat{ABC}=180^o-\left(90^o+30^o\right)=60^o\)

14 tháng 1 2018

Cảm ơn SKT_NTT rất nhiều!