Cho tam giác ABC vuông tại A, đường cao AH. Cho biết AB = 15cm, AH = 12cm.
a) Chứng minh \(\Delta ABH\sim\Delta CAH\).
b) Tính BH, CH, AC.
c) Trên cạnh AC lấy điểm E sao cho CE = 5cm, trên cạnh BC lấy điểm F sao cho CF = 4cm. Chứng minh tam giác CEF vuông.
d) Chứng minh CE.CA = CF.CB.
a) Ta có: \(\widehat{A_1}+\widehat{B_1}=90^o\) (\(\Delta ABH\) vuông tại H) (1)
lại có: \(\widehat{A_1}+\widehat{A_2}=90^o\) (\(\Delta ABC\) vuông tại A) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{A_2}=\widehat{B_1}\) (= \(\widehat{A_1}\))
\(\Delta ABH\) và \(\Delta CAH\) có:
\(\widehat{A_2}=\widehat{B_1}\) (cmt)
\(\widehat{H}\) chung
Vậy \(\Delta ABH\) đồng dạng với \(\Delta CAH\).
b) Áp dụng định lý Py-ta-go vào tam giác vuông AHB, ta có:
\(BH^2=AB^2-AH^2\)
\(\Leftrightarrow BH=\sqrt{15^2-12^2}\)
\(\Leftrightarrow BH\) = 9 (cm)
Ta có: \(\Delta ABH\) đồng dạng với \(\Delta CAH\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}\dfrac{AH}{CH}=\dfrac{BH}{AH}\Leftrightarrow\dfrac{12}{CH}=\dfrac{9}{12}\Leftrightarrow CH=16\left(cm\right)\\\dfrac{AB}{AC}=\dfrac{BH}{AH}\Leftrightarrow\dfrac{15}{AC}=\dfrac{9}{12}\Leftrightarrow AC=20\left(cm\right)\end{matrix}\right.\)
Vậy BH = 9 (cm)
CH = 16 (cm)
AC = 20 (cm)
c) Ta có: \(\dfrac{CE}{AC}=\dfrac{CF}{CH}\left(\dfrac{5}{20}=\dfrac{4}{16}=\dfrac{1}{4}\right)\)
\(\Rightarrow\) EF // AH, mà AH \(\perp\) BC
\(\Rightarrow\) EF \(\perp\) BC
\(\Rightarrow\) \(\Delta CEF\) vuông tại F.
d) \(\Delta CEF\) và \(\Delta CBA\) có:
\(\widehat{A}=\widehat{F}\left(=90^o\right)\)
\(\widehat{C}\) chung
Vậy \(\Delta CEF\) đồng dạng với \(\Delta CBA\)
\(\Rightarrow\) \(\dfrac{CE}{CB}=\dfrac{CF}{CA}\)
\(\Rightarrow\) CE . CA = CF . CB (đpcm)