chứng tỏ rằng với số tự nhiên n thì tích (n+3).(n-1).(n+7) luôn chia hết cho 3 ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n là số lẻ thì số lẻ + số lẻ =số chẵn và nó nhân n sẽ chia hết cho 2
n là số chẵn thì n x mấy vẫn chia hết cho 2
Xét
-n là số lẻ =>n+3=số chẵn=>nx(n+3) chia hết cho 2
-n chẵn thì nx(n+3)chia hết cho 2
vài cái nhé
Gọi 3 stn liên tiếp là: a , a + 1 , a + 2 (a là stn)
Ta có : a + a + 1 + a + 2
= a(1 + 2 )
=a3
Suy ra đpcm
Gọi 3 STN liên tiếp là : a ; a+1 ; a+2
a có 3 dạng 3k ; 3k +1 l 3k + 2
Thay vào mà tính
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
1) +Với n là số chẵn => n+3 lẻ và n+6 chẵn. Vì 1 số chẵn và 1 số lẻ nhân với nhau tạo thành số chẵn hay tích đó chia hết cho 2 ( đpcm)
+Với n là số lẻ => n+3 chẵn và n+6 lẻ ( tương tự câu trên)
2)Tg tự câu a
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)
cảm ơn nha!!! Cho mik/em hỏi sao có mỗi bài 5 vậy bạn/anh/chị.
Xét 3 trường hợp:
+) Nếu n chia hết cho 3 => n= 3k =>3k+3 chia hết cho 3
=>n+3 chia hết cho 3=> (n+3).(n-1).(n+7) chia hết cho 3
+) Nếu n chia 3 dư 1 =>n=3k+1
=>n-1=3k+1-1=3k chia hết cho 3
=>n-1 chia hết cho 3
=>(n+3).(n-1).(n+7) chia hết cho 3
+) Nếu n chia 3 dư 2
=>n=3k+2 =>n+7=3k+2+7=3k+9 = 3.(k+2) chia hết cho 3
=>n+7 chia hết cho 2
=>(n+3).(n-1).(n+7) chia hết cho 3
Từ 3 TH trên =>đpcm