K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Lời giải:

Trên tia đối của $DE$ lấy $K$ sao cho \(DK=BC\)

Xét tam giác $KDB$ và $CBD$ có:

\(\widehat{KDB}=\widehat{CBD}\) (so le trong)

\(KD=CB\)

$BD$ chung

Do đó \(\triangle KDB=\triangle CBD(c.g.c)\Rightarrow KB=CD(1)\)

\(DE\parallel BC\) nên theo định lý Ta-let: \(\frac{DB}{EC}=\frac{AB}{AC}=1\) (do ABC cân)

\(\Rightarrow DB=EC\)

Xét tam giac $DBC$ và $ECB$ có:

\(BC\) chung

\(\widehat{DBC}=\widehat{ECB}\)

\(DB=EC\)

\(\Rightarrow \triangle DBC=\triangle ECB(c.g.c)\Rightarrow DC=EB(2)\)

Từ \((1);(2)\Rightarrow 2BE=BE+CD=BE+KB> KE\) theo BĐT tam giác

\(\Rightarrow 2BE> KD+DE\Rightarrow 2BE> BC+DE\Rightarrow BE> \frac{1}{2}(DE+BC)\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
4 tháng 10 2018

Hình vẽ:

Chương III : Quan hệ giữa các yếu tố trong tam giác, các đường đồng quy của tam giác

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:1) CF= 2BD2) DM= 1/4 CF   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N....
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
   Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
    Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân

0

1: Xét ΔABC có DE//BC

nên AE/AC=AD/AB

=>AE/8=1/3

=>AE=8/3(cm)

2:

Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/10=1/3

=>DE=10/3(cm)

Xét tứ giác BDEF có

BD//EF

BF//DE

Do đó: BDEF là hình bình hành

=>BF=DE=10/3(cm)

3:

AD/AB=1/3

AE/AC=1/3

DE/BC=1/3

Do đó: AD/AB=AE/AC=DE/BC