Cho a,b,c>0 thỏa mãn a+b+c=1 .CMR:
\(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\) \(\le\)\(\sqrt{6}\)
(Sử dụng Cauchy)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Easy!
\(A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(=\sqrt{\frac{3}{2}}\left[\sqrt{\left(a+b\right).\frac{2}{3}}+\sqrt{\left(b+c\right).\frac{2}{3}}+\sqrt{\left(c+a\right).\frac{2}{3}}\right]\) (*)
Áp dụng BĐT Cô si ngược,ta có:
(*) \(\le\sqrt{\frac{3}{2}}\left[\frac{a+b+\frac{2}{3}}{2}+\frac{b+c+\frac{2}{3}}{2}+\frac{c+a+\frac{2}{3}}{2}\right]\)
\(=\sqrt{\frac{3}{2}}\left(a+b+c+1\right)=\sqrt{\frac{3}{2}}.2=\sqrt{6}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a+b=b+c=c+a=\frac{2}{3}\\a+b+c=1\end{cases}\Leftrightarrow}a=b=c=\frac{1}{3}\)
Bạn tham khảo câu này nhé:
https://olm.vn/hoi-dap/detail/210792556876.html
Áp dụng BĐT Bu-nhi-a-cốp-ski, ta có :
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1^2+1^2+1^2\right)\left(2\left(a+b+c\right)\right)=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
a) Áp dụng bđt AM-GM cho 2 số không âm ta có: \(\sqrt{a+1}=\sqrt{1.\left(a+1\right)}\le\frac{1+a+1}{2}=\frac{a}{2}+1\)
Tương tự: \(\sqrt{b+1}\le\frac{b}{2}+1\)
\(\sqrt{c+1}\le\frac{c}{2}+1\)
Cộng vế với vế ta được: \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\frac{a+b+c}{2}+3=3,5\)
Dấu "='' xảy ra khi a + 1 = b + 1 = c + 1 = 1
<=> a = b = c = 0, mâu thuẫn với đề: a + b + c = 1
Do đó \(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}< 3,5\left(đpcm\right)\)
b) Áp dụng bđt Cauchy-Schwarz cho bộ 3 số dương ta có:
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)^2\le\left(1+1+1\right)\)\(\left[\left(\sqrt{a+b}\right)^2+\left(\sqrt{b+c}\right)^2+\left(\sqrt{c+a}\right)^2\right]\)
\(\Rightarrow\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le3.2.\left(a+b+c\right)=6.1=6\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{6}\left(đpcm\right)\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)
BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)
Ta có:
\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)
\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)
Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)
\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)
Cộng vế với vế:
\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)
Đẳng thức quen thuộc: \(a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\) và tương tự cho các mẫu số còn lại
Ta có:
\(\sum\dfrac{1}{a^2+1}=\sum\dfrac{1}{\left(a+b\right)\left(a+c\right)}=\dfrac{2\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=\dfrac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Mặt khác:
\(2\left(ab+bc+ca\right)\left(a+b+c\right)=\left[a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)\right]\left(a+b+c\right)\)
\(\ge\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\) (Bunhiacopxki)
\(\Rightarrow\sum\dfrac{1}{a^2+1}\ge\dfrac{\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\left(\dfrac{a}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\right)^2\)
\(=\left(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\right)^2\)
Do đó ta chỉ cần chứng minh:
\(\dfrac{a}{\sqrt{a^2+1}}+\dfrac{b}{\sqrt{b^2+1}}+\dfrac{c}{\sqrt{c^2+1}}\le\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\dfrac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\dfrac{3}{2}\)
Đúng theo AM-GM:
\(\sum\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{1}{2}\sum\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Lời giải:
Áp dụng BĐT Cauchy cho các số dương ta có:
\(\sqrt{\frac{2}{3}(1-a)}\leq \frac{\frac{2}{3}+1-a}{2}\)
\(\sqrt{\frac{2}{3}(1-b)}\leq \frac{\frac{2}{3}+1-b}{2}\)
\(\sqrt{\frac{2}{3}(1-c)}\leq \frac{\frac{2}{3}+1-c}{2}\)
Cộng theo vế:
\(\sqrt{\frac{2}{3}}(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c})\leq \frac{2+3-(a+b+c)}{2}\)
\(\Leftrightarrow \sqrt{\frac{2}{3}}(\sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c})\leq 2\)
\(\Leftrightarrow \sqrt{1-a}+\sqrt{1-b}+\sqrt{1-c}\leq \sqrt{6}\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)