Cho tam giac ABC vuông tại A, kẻ AH vuông góc với BC(H thuộc BC)
Chứng minh rằng:
a. AH. BC=AB. AC
b .AB^2=BH. BC
c. AC^2=CH. BC
d. 1/AH^2=1/AB^2+1/AC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔACH\(\sim\)ΔBCA(g-g)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AC^2=CH\cdot CB\)(đpcm)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:
\(CH\cdot10=8^2=64\)
hay CH=6,4(cm)
Ta có: CH+BH=BC(H nằm giữa B và C)
nên BH=BC-CH=10-6,4=3,6(cm)
Vậy: BH=3,6cm; CH=6,4cm
c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có
\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó: ΔABH\(\sim\)ΔCAH(g-g)
\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=BH\cdot CH\)(đpcm)
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(AH\cdot BC=AB\cdot AC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)