K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

nên \(AH\cdot BC=AB\cdot AC\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AC^2=CH\cdot BC\)

1 tháng 3 2017

m×nh hocp 4 th× m×nh chÞu

18 tháng 2 2017

Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung 
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC 
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
 

1) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

5 tháng 4 2021

bn trả lời mấy ý còn lại hộ mk vs

 

 

24 tháng 2 2022

giúp vs

 

a) Xét ΔACH vuông tại H và ΔBCA vuông tại A có

\(\widehat{C}\) chung

Do đó: ΔACH\(\sim\)ΔBCA(g-g)

\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{CH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AC^2=CH\cdot CB\)(đpcm)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)

hay AC=8(cm)

Thay AC=8cm và BC=10cm vào biểu thức \(AC^2=CH\cdot BC\), ta được:

\(CH\cdot10=8^2=64\)

hay CH=6,4(cm)

Ta có: CH+BH=BC(H nằm giữa B và C)

nên BH=BC-CH=10-6,4=3,6(cm)

Vậy: BH=3,6cm; CH=6,4cm

c) Xét ΔABH vuông tại H và ΔCAH vuông tại H có

\(\widehat{ABH}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))

Do đó: ΔABH\(\sim\)ΔCAH(g-g)

\(\Leftrightarrow\dfrac{AH}{CH}=\dfrac{BH}{AH}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AH^2=BH\cdot CH\)(đpcm)

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A