K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

1/ \(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{8^2}\)

\(B< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{7.8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)

\(B< \dfrac{1}{1}-\dfrac{1}{8}< 1\)

\(B< 1\)

2/ \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{20}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{19}{20}\)

\(B=\dfrac{1\times2\times3\times...\times19}{2\times3\times4\times...\times20}\)

\(B=\dfrac{1}{20}\)

3/ \(A=\dfrac{7}{4}\cdot\left(\dfrac{3333}{1212}+\dfrac{3333}{2020}+\dfrac{3333}{3030}+\dfrac{3333}{4242}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{12}+\dfrac{33}{20}+\dfrac{33}{30}+\dfrac{33}{42}\right)\)

\(A=\dfrac{7}{4}\cdot\left(\dfrac{33}{3.4}+\dfrac{33}{4.5}+\dfrac{33}{5.6}+\dfrac{33}{6.7}\right)\)

\(A=\dfrac{7}{4}.33.\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}.\left(\dfrac{1}{3}-\dfrac{1}{7}\right)\)

\(A=\dfrac{231}{4}\cdot\dfrac{4}{21}\)

\(A=11\)

4/ A phải là \(\dfrac{2011+2012}{2012+2013}\)

Ta có : \(B=\dfrac{2011}{2012}+\dfrac{2012}{2013}>\dfrac{2011}{2013}+\dfrac{2012}{2013}=\dfrac{2011+2012}{2013}>\dfrac{2011+2012}{2012+2013}=A\)

\(\Rightarrow B>A\)

1: \(S=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{101}{100}=\dfrac{101}{2}\)

2: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot...\cdot\dfrac{2006}{2007}=\dfrac{1}{2007}\)

26 tháng 8 2023

\(\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)\cdot\left(\dfrac{1}{1+2+3+...+2006}\right)\)

\(=\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot\left\{\dfrac{1}{\left(2006+1\right)\left[\left(2006-1\right):1+1\right]}\right\}\)

\(=\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot\dfrac{1}{2007\cdot2006}\)

\(=\dfrac{10}{18}\cdot\dfrac{1}{4026042}\)

\(=\dfrac{5}{9}\cdot\dfrac{1}{4026042}\)

\(=\dfrac{5}{36234378}\)

\(N=4\cdot16\cdot\dfrac{9}{16}\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}=4\cdot9\cdot\dfrac{4}{5}\cdot\dfrac{27}{8}\)

\(=\dfrac{16}{5}\cdot\dfrac{243}{8}=\dfrac{486}{5}\)

14 tháng 10

 

????

 

22 tháng 6 2022

a) A=[27(14−13)]:[27(13−25)]=(14−13):(13−25)=114.
b) B=34(15−27−13+27)15(27+13)−13(27+13)=34(15−13)(15−13)(27+13)=11152.

13 tháng 7 2022

a) \mathrm{A}=\left[\dfrac{2}{7}\left(\dfrac{1}{4}-\dfrac{1}{3}\right)\right]:\left[\dfrac{2}{7}\left(\dfrac{1}{3}-\dfrac{2}{5}\right)\right]=\left(\dfrac{1}{4}-\dfrac{1}{3}\right):\left(\dfrac{1}{3}-\dfrac{2}{5}\right)=1 \dfrac{1}{4}.
b) \mathrm{B}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{2}{7}-\dfrac{1}{3}+\dfrac{2}{7}\right)}{\dfrac{1}{5}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)-\dfrac{1}{3}\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=\dfrac{\dfrac{3}{4}\left(\dfrac{1}{5}-\dfrac{1}{3}\right)}{\left(\dfrac{1}{5}-\dfrac{1}{3}\right)\left(\dfrac{2}{7}+\dfrac{1}{3}\right)}=1 \dfrac{11}{52}

21 tháng 6 2022

\(a)\left(\dfrac{1}{2}+1,5\right)x=\dfrac{1}{5}\)

\(\Rightarrow2x=\dfrac{1}{5}\)

\(\Rightarrow x=\dfrac{1}{10}\)

\(b)\left(-1\dfrac{3}{5}+x\right):\dfrac{12}{13}=2\dfrac{1}{6}\)

\(\Leftrightarrow-\dfrac{8}{5}+x=\dfrac{13}{6}.\dfrac{12}{13}\)

\(\Leftrightarrow-\dfrac{8}{5}+x=2\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(c)\left(x:2\dfrac{1}{3}\right).\dfrac{1}{7}=-\dfrac{3}{8}\)

\(\Leftrightarrow x:\dfrac{7}{3}=-\dfrac{3}{8}:\dfrac{1}{7}\)

\(\Leftrightarrow x=-\dfrac{21}{8}.\dfrac{7}{3}\)

\(\Leftrightarrow x=-\dfrac{49}{8}\)

\(d)-\dfrac{4}{7}x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1\dfrac{2}{3}\right)\)

\(\Leftrightarrow-\dfrac{4}{7}x+\dfrac{7}{5}=-\dfrac{3}{40}\)

\(\Leftrightarrow-\dfrac{4}{7}x=-\dfrac{59}{40}\)

\(\Leftrightarrow x=\dfrac{413}{160}\)

 

13 tháng 7 2022

a)\left(\dfrac{1}{2}+1,5\right) \cdot x=\dfrac{1}{5}

2 \cdot x=\dfrac{1}{5}

x=\dfrac{1}{5}: 2

 x=\dfrac{1}{10}
b) \left(-1 \dfrac{3}{5}+x\right): \dfrac{12}{13}=2 \dfrac{1}{6}

-1 \dfrac{3}{5}+x=\dfrac{13}{6} \cdot \dfrac{12}{13}
x=2+1 \dfrac{3}{5}

 x=3 \dfrac{3}{5}
c) \left(x: 2 \dfrac{1}{3}\right) \cdot \dfrac{1}{7}=\dfrac{-3}{8}

x \cdot \dfrac{3}{7} \cdot \dfrac{1}{7}=\dfrac{-3}{8}

x=\dfrac{-3}{8}: \dfrac{3}{49}
x=\dfrac{-49}{8}=-6 \dfrac{1}{8}
d) \dfrac{-4}{7} \cdot x+\dfrac{7}{5}=\dfrac{1}{8}:\left(-1 \dfrac{2}{3}\right)

\dfrac{-4}{7} x+\dfrac{7}{5}=\dfrac{1}{8} \cdot \dfrac{-3}{5}
-\dfrac{4}{7} x=\dfrac{-3}{40}-\dfrac{7}{5} \\ x=\dfrac{-59}{40}: \dfrac{-4}{7}=\dfrac{413}{160}=2 \dfrac{93}{160}
 

Tính giá trị biểu thức : 1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\) 2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\) 3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\) 4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\) 5. Cho...
Đọc tiếp

Tính giá trị biểu thức :

1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)

2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)

3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)

4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)

5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)

6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)

7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)

9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)

10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)

11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)

12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)

13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)

14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)

15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)

16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)

2
27 tháng 11 2017

1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)

2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)

3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)

4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)

29 tháng 4 2022

hôi lì sít

10 tháng 9 2017

\(B=1+\dfrac{1}{2}.\left(1+2\right)+\dfrac{1}{3}.\left(1+2+3\right)+\dfrac{1}{4}.\left(1+2+3+4\right)+...+\dfrac{1}{100}.\left(1+2+3+...+100\right)\)

\(B=1+\dfrac{1}{2}.2.3:2+\dfrac{1}{3}.3.4:2+\dfrac{1}{4}.4.5:2+...+\dfrac{1}{100}.100.101:2\)

\(B=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{101}{2}\)

\(B=\dfrac{2+3+4+...+101}{2}\)

Tự tính :v