Trong mặt phẳng toạ độ Oxy cho Parabol (P): \(y=x^2\) và đường thẳng (d): \(y=mx+2\)
a) Chứng minh rằng với mọi giá trị của m thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm nằm về 2 phía của trục tung
b) Giả sử đường thẳng (d) cắt Parabol (P) tại \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\). Tìm giá trị của m để \(\left|y_1-y_2\right|=\sqrt{24-x^2_2-mx_1}\)
a.
pthdgd
x^2-mx-2=0
∆=m^2+2>o moi m
c/a=-2<0
=>x1<0<x2 moi m => dpcm