K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} \sqrt[3]{x^3-7}+y^2-2y+3=0\\ x^2+x^2y^2-2y=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \sqrt[3]{x^3-7}+2+(y^2-2y+1)=0\\ x^2(y^2+1)=2y\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{x^3+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(y-1)^2=0(1)\\ x^2=\frac{2y}{y^2+1}(2)\end{matrix}\right.\)

Từ \((2)\Rightarrow 1-x^2=\frac{y^2+1-2y}{y^2+1}\Leftrightarrow (1-x)(1+x)=\frac{(y-1)^2}{y^2+1}\)

Thay vào (1):

\(\frac{x^3+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(1-x)(1+x)(y^2+1)=0\)

\(\Leftrightarrow (x+1)\left[\frac{x^2-x+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(1-x)(y^2+1)\right]=0\)

+) Nếu \(x+1=0\Rightarrow x=-1\Rightarrow y=1\) (thay vào)

+) Nếu biểu thức trong ngoặc lớn bằng $0$

\(\Rightarrow (x-1)(y^2+1)=\frac{x^2-x+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}>0\)

\(\Rightarrow x>1\) \(\Rightarrow x^2>1\) hay \(\frac{2y}{y^2+1}>1\) hay \(0>(y-1)^2\) (vô lý)

Vậy hpt có nghiệm duy nhất \((x,y)=(-1,1)\)

\(\Rightarrow Q=x^{2008}+y^{2008}=(-1)^{2008}+1^{2008}=2\)

27 tháng 6 2019

1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)

\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)

Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :

\(\sqrt{4y}+\sqrt{y+1}=2\)

\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)

Giải pt thu được (x;y)

Th2:x=-y thay vào \(\left(\circledast\right)\), ta có

\(\sqrt{-2x}+\sqrt{y+1}=2\)

Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)

Vậy ....

27 tháng 6 2019

2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)

\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)

Th1:\(x=y+1\)

Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)

Th2:\(x=-y^2\)thay vào ta có:

\(\sqrt{-y^2}+\sqrt{y+1}=2\)

\(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt

\(\Rightarrow\)Pt vô nghiệm

31 tháng 10 2019

1/PT (1) cho ta nhân tử x - y - 1:)

\(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\left(1\right)\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\left(2\right)\end{matrix}\right.\)

ĐK: \(x\le5;y\le4\); \(2x+y+5\ge0;3x+2y+11\ge0\)

PT (1) \(\Leftrightarrow\left(17-3x\right)\left(\sqrt{5-x}-\sqrt{4-y}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(3x-17\right)\left(\frac{x-y-1}{\sqrt{5-x}+\sqrt{4-y}}\right)-3\left(x-y-1\right)\sqrt{4-y}=0\)

\(\Leftrightarrow\left(x-y-1\right)\left(\frac{3x-17}{\sqrt{5-x}+\sqrt{4-y}}-3\sqrt{4-y}\right)=0\)

Dễ thấy cái ngoặc to < 0

Do đó x= y + 1

Thay xuống PT (2):\(y^2+8y+20=2\sqrt{3y+7}+3\sqrt{5y+14}\)\(\left(y+1\right)\left(y+2\right)=y^2+3y+2\)

ĐK: \(y\ge-\frac{7}{3}\) (để các căn thức được thỏa mãn)

PT (2) \(\Leftrightarrow y^2+3y+2+2\left(y+3-\sqrt{3y+7}\right)+3\left(y+4-\sqrt{5y+14}\right)=0\)

\(\Leftrightarrow\left(y^2+3y+2\right)\left(1+\frac{2}{y+3+\sqrt{3y+7}}+\frac{3}{y+4+\sqrt{5y+14}}\right)=0\)

Cái ngoặc to > 0 =>...

P/s: Is that true? Ko đúng thì chịu thua-_- Mất nửa tiếng đồng hồ để gõ bài này đấy:(

31 tháng 10 2019

2/ĐK: \(x\ge-y;y\ge0\)

PT (1) \(\Leftrightarrow x\left(x+y\right)+\sqrt{x+y}=2y^2+\sqrt{2y}\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)+y\left(x-y\right)+\sqrt{x+y}-\sqrt{2y}=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+2y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}\right)=0\)

Cái ngoặc to \(\ge y+\frac{1}{\sqrt{x+y}+\sqrt{2y}}>0\).

Do đó x = y \(\ge0\)

Thay xuống pt dưới: \(x^3-5x^2+14x-4=6\sqrt[3]{x^2-x+1}\)

Lập phương hai vế lên ra pt bậc 6, tuy nhiên cứ yên tâm, nghiệm rất đẹp: x = 1:)

Em đưa kết quả luôn: \(\left(x-1\right)\left(x^2-4x+7\right)\left(x^6-10x^5+56x^4-160x^3+272x^2-64x+40\right)=0\)

P/s: khúc cuối em ko còn cách nào khác nên đành lập phương:((

5 tháng 2 2020

1.

\(\left\{{}\begin{matrix}x-2y-\sqrt{xy}=0\\\sqrt{x-1}-\sqrt{2y-1}=1\end{matrix}\right.\)

\(pt\left(1\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-2\sqrt{y}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=-\sqrt{y}\\\sqrt{x}=\sqrt{2y}\end{matrix}\right.\)

cái đầu tiên loại vì x=y=0 không phải là nghiệm của hệ

suy ra x=2y thày vào pt(2) ta thấy 0 = 1 vô lý

vậy pt vô nghiệm

20 tháng 3 2019

b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)

\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)

\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)

\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)

\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)

\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)

20 tháng 3 2019

caau a) binh phuong len ra no x=y tuong tu