Tìm các số tự nhiên n sao cho n2 16n 2011 là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2+16n+2011=k^2\left(k\in N\right)\)
\(< =>\left(n^2+16n+64\right)+1947=k^2\)
\(< =>\left(n+8\right)^2+1947=k^2< =>k^2-\left(n+8\right)^2=1947\)
\(< =>\left(k-n-8\right)\left(k+n+8\right)=1947\)
Có \(k-n-8< k+n+8\)
\(=>\left(k-n-8\right)\left(k+n+8\right)=1.1947=3.649=11.177\)
bn tự giải tiếp nhé,đến đây dễ rồi
_bạn còn thiếu 1 trường hợp là 59 .33 nhé # CTV Hoàng Phúc
đặt 2n + 34 = a^2
34 = a^2-n^2
34=(a-n)(a+n)
a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)
=> a-n 1 2
a+n 34 17
Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ
Vậy ....
Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.
=> S= (1004+14).100:2=50 900 ko là SCP
Vì 2n+1 là số chính phương lẻ nên
2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4
Do đó n+1 cũng là số lẻ, suy ra
n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8
Lại có
(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2
Ta thấy
3n+2≡2(mod3)3n+2≡2(mod3)
Suy ra
(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)
Mà n+1 và 2n+1 là các số chính phương lẻ nên
n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)
Do đó
n⋮3n⋮3
Vậy ta có đpcm.