Cho 4 số a,b,c,d thuộc z+, trong đó b là TBC của a và c va 1/c=1/2(1/b+1/a).CMR 4 số a,b,c,d lập nên 1 tỉ lệ thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)
\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)
Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)
Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)
=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)
=> (a + c).2d = c.(a + c + 2d)
=> 2ad + 2cd = ac + c2 + 2cd
=> 2ad = ac + c2 = c.(a + c) = c.2b
=> ad = bc
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
+) b là trung bình cộng của a và c => a + c = 2b
+) \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{2}{d}\right)\) => \(\frac{1}{c}=\frac{d+2b}{2bd}\) => 2bd = c(d + 2b) . Thay 2b = a + c ta có:
(a + c)d = c.(d + a + c) => ad + cd = cd + ac + c2 => ad = ac + c2 => ad = c.(a + c) => ad = cb => \(\frac{a}{b}=\frac{c}{d}\) (điều phải chứng minh)
Ta có b là TBC của a và c => a + c = 2b
+) 1:c = 1:2(1:b + 2:d) => 1:c = (d+2b):(2bd)
=> 2bd = c(d+2b)
Thay 2b = a + c, ta có :
(a + c)d = c(d + a + c) => ad + cd = cd + ac + \(c^2\)
=> ad = ac + \(c^2\) => ad = c(a+c) => ad = cb => a:b = c:d