Bài 1: Cho tam giác ABC vuông tại A. Biết AB = 8cm, AC = 6cm
a. Tính BC
b. Vẽ ba đường trung tuyến AM, BN, CP. Gọi G là trọng tâm của tam giác ABC. Tính BN và CP
c. Tính GN và GC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Py-ta-go vào tam giác ACM, ta có:
\(AM^2+CM^2=CA^2\)
Hay \(3,5^2+CM^2=5^2\)=>\(CM^2\)=25-12,25=12,75 => CM=\(\sqrt{12,75}\)
Vì M là trung điểm của CB => CM =MB =\(\sqrt{12,75}\)
=> CB= 2. \(\sqrt{12,75}\) =\(\sqrt{51}\)
Áp dụng định lí Py-ta-go vào tam giác ABC, ta có:
AC^2+AB^2=BC^2
Hay 5^2+AB^2=\(\sqrt{51}^2\)
=>AB=\(\sqrt{26}\)
b) BN=\(\frac{\sqrt{26}}{2}\)
CP=\(\frac{\sqrt{74}}{2}\)
Hình như vậy đó bạn
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
a)tam giác abc vuông tại a nên theo định lí Py-ta-go,ta có :
BC2 =AC2+AB2
hay BC^2 =12^2+9^2
BC^2=81+144=225
BC=15CM
b) tam giác abc vuông tại a có đường trung tuyến ứng với cạnh huyền bc
=> AM=1/2 BC
hay AM=1/2.15
AM=7.5 cm
ta có g là trọng tâm cura tam giác abc
=> GM=1/3 AM ( tính chất đường trung tuyến )
GM=1/3.7,5
GM=2,5 cm
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)