K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2018

ta có 3n^3+13n^2-7n+5 = 3n^3-2n^2+15n^2-10n+3n-2+7 = n^2(3n-2)+5n(3n-2)+3n-2+7 = (n^2+5n+1)(3n-2)+7 => (3n^3+13n^2-7n+5) : (3n-2) có dư =7 để 3n^3+13n^2-7n+5 chia hết thì 7\(⋮\)3n-2 => 3n-2ϵƯ(7) =\(\left\{-1,1,-7,7\right\}\)

=> n\(\in\)\(\left\{1;\dfrac{1}{3},-\dfrac{5}{3},2\right\}\) vậy .....
16 tháng 7 2016

a) \(n^2-3n+9\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(n^2-2n-n-2+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)\(\left(n-2\right)\left(n+1\right)+11\)chia het cho \(n-2\)

\(\Leftrightarrow\)11 chia het cho \(n-2\)

\(\Rightarrow\)\(n-2\in U\left(11\right)\)\(\Rightarrow\)\(n-2\in\left\{-11;-1;1;11\right\}\)

                                                   \(\Rightarrow\)\(n\in\left\{-9;1;3;13\right\}\)

16 tháng 7 2016

b) 2n-1 chia hết cho n-2

\(\Rightarrow2n-2+3\) chia hết cho\(n-2\)

\(\Rightarrow3\)chia hết cho \(n-2\)

\(\Rightarrow n-2\in U\left(3\right)\)\(\Rightarrow n-2\in\left\{-3;-1;1;3\right\}\)\(\Rightarrow n\in\left\{-1;1;3;5\right\}\)

27 tháng 6 2017

a, Ta có: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

\(\Rightarrowđpcm\)

b, \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10=2\left(12n+5\right)⋮2\)

\(\Rightarrowđpcm\)

27 tháng 6 2017

a)

= n3 + 2n2 + 3n2 + 6n - n - 2 + 2

= 5n2 + 5n

= 5(n2 + n ) chia hết cho 5

b)

= 2(12n +5) chia hết cho 2

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

17 tháng 12 2016

Đặt tính ra, kết quả số dư là 7.

Để 7 chia hết cho 3n-2 thì:

7 chia hết cho 3n-2

=> \(\left(3n-2\right)\inƯ\left(7\right)\)

Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)

=> 

3n-21-17-7
n1\(\frac{1}{3}\)\(\frac{-5}{3}\)2
17 tháng 12 2016

Bạn bất cẩn quá!!! Khúc cuối tìm x bạn tìm nhầm r!! 

5 tháng 7 2016

xem lại câu a nhé bạn

23 tháng 12 2018

ta có : \(3n^3+10n^2-5⋮3n+1\)

\(\Rightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Rightarrow n\left(3n+1\right)+3n\left(3n+1\right)-\left(3n+1\right)-3⋮3n+1\)

\(\Rightarrow\left(n+3n+1\right)\left(3n+1\right)-4⋮3n+1\)

mà \(\left(4n+1\right)\left(3n+1\right)⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;\pm1\right\}\)

12 tháng 8 2016

1)Ta có:

Để a lớn nhất, thỏa mãn =>\(a\le195\)

a+495 chia hết a

và 195-a chia hết a

=>a+495+195-a chia hết d

=>690 chia hết a

=>a là Ư(690) mà \(a\le195\)

\(\Rightarrow a=138\)

NV
10 tháng 1 2021

\(\lim\dfrac{\left(2n-1\right)\left(3n^2+2\right)^3}{-2n^5+4n^3-1}=\lim\dfrac{\left(\dfrac{2n-1}{n}\right)\left(\dfrac{3n^2+2}{n^2}\right)^3}{\dfrac{-2n^5+4n^3-1}{n^7}}\)

\(=\lim\dfrac{\left(2-\dfrac{1}{n}\right)\left(3+\dfrac{2}{n^2}\right)^3}{-\dfrac{2}{n^2}+\dfrac{4}{n^4}-\dfrac{1}{n^7}}=-\infty\)

\(\lim3^n\left(6.\left(\dfrac{2}{3}\right)^n-5+\dfrac{7n}{3^n}\right)=+\infty.\left(-5\right)=-\infty\)

6 tháng 1 2018

a. \(2n+7⋮n+1\)

Mà \(n+1⋮n+1\)

\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)

\(\Leftrightarrow5⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(5\right)\)

Suy ra :

+) n + 1 = 1 => n = 0

+) n + 1 = 5 => n = 4

Vậy ........