Cho hbh ABCD ,trên đg chéo AC lấy I.Tia DI cắt đg thẳng AB tại M và cắt đg thẳng BC tại N.CMR:
a)\(\dfrac{MN}{ND}=\dfrac{BN}{NC}\)
b)\(\dfrac{AM}{AB}=\dfrac{DM}{DN}=\dfrac{CB}{CN}\)
c)\(ID^2\)=IM.IN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta AED\) và \(\Delta BEN\)
Ta có : \(\widehat{AED}=\widehat{BEN}\) ( đối đỉnh )
\(\widehat{ADE}=\widehat{BNE}\) ( Do \(\text{AD//BC}\) )
\(\Rightarrow\Delta AED\sim\Delta BEN\)
b) Ta có : \(\text{AE//DC}\) ( Do \(ABCD\) là hình bình hành )
\(\Rightarrow\dfrac{AM}{MC}=\dfrac{EM}{MD}\) ( theo định lí Ta-lét )
\(\Rightarrow MA.DM=MC.ME\)
c) Ta có :
\(\text{AE//DC}\)\(\Rightarrow\dfrac{DM}{DC}=\dfrac{CM}{AC}\)( theo định lí Ta-lét )
\(\text{AD//BC}\) \(\Rightarrow\dfrac{AM}{AC}=\dfrac{DM}{DN}\)( theo định lí Ta-lét )
\(\Rightarrow\dfrac{DM}{DE}+\dfrac{DM}{DN}=\dfrac{CM}{AC}+\dfrac{AM}{AC}=1\)
\(\Rightarrow\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)
2b
do ABCDlà hbh
=> AD=BC
AB//CD=>NB//CD
AD//BC => AD//CK
vì NB//CD
=>\(\dfrac{DM}{MK}=\dfrac{AD}{CK}\) (theo hệ quả ta-lét)
mà AD=BC
=> \(\dfrac{DM}{MK}=\dfrac{BC}{CK}\) (*)
vì AD//CK
=> \(\dfrac{DN}{DK}=\dfrac{BC}{CK}\) (theo đl ta-lét) (**)
Từ (*) và (**) ta có
\(\dfrac{DN}{DK}=\dfrac{DM}{MK}\) =>\(\dfrac{MK}{DK}=\dfrac{DM}{DN}\)
ta có
\(\dfrac{DM}{DN}+\dfrac{DM}{DK}=\dfrac{MK}{DK}+\dfrac{DM}{DK}=\dfrac{DK}{DK}=1\) (đpcm)